Characterization of Sparsity-aware Optimization Paths for Graph Traversal on FPGA
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Breath-first search (BFS) is a fundamental building block in many graph-based applications, but it is difficult to optimize for a field-programmable gate array (FPGA) due to its irregular memory-access patterns. Prior work, based on hardware description languages (HDLs) and high-level synthesis (HLS), address the memory-access bottleneck of BFS by using techniques such as data alignment and compute-unit replication on FPGAs. The efficacy of such optimizations depends on factors such as the sparsity of target graph datasets. Optimizations intended for sparse graphs may not work as effectively for dense graphs on an FPGA and vice versa. This thesis presents two sets of FPGA optimization strategies for BFS, one for near-hypersparse graphs and the other designed for sparse to moderately dense graphs.
For near-hypersparse graphs, a queue-based kernel with maximal use of local memory on FPGA is implemented. For denser graphs, an array-based kernel with compute-unit replication is implemented. Across a diverse collection of graphs, our OpenCL optimization strategies for near-hypersparse graphs delivers a 5.7x to 22.3x speedup over a state-of-the-art OpenCL implementation, when evaluated on an Intel Stratix~10 FPGA. The optimization strategies for sparse to moderately dense graphs deliver 1.1x to 2.3x speedup over a state-of-the-art OpenCL implementation on the same FPGA. Finally, this work uses graph metrics such as average degree and Gini coefficient to observe the impact of graph properties on the performance of the proposed optimization strategies.