Considerations for TGA of Respirable Coal Mine Dust Samples

dc.contributor.authorScaggs, Meredithen
dc.contributor.authorSarver, Emily A.en
dc.contributor.authorKeles, Cigdemen
dc.contributor.departmentMining and Minerals Engineeringen
dc.date.accessioned2016-12-20T17:44:32Zen
dc.date.available2016-12-20T17:44:32Zen
dc.date.issued2015en
dc.description.abstractRespirable dust in coal mining environments has long been a concern for occupational health. Over the past several decades, much effort has been devoted to reducing dust exposures in these environments, and rates of coal workers’ pneumoconiosis (CWP) have dropped significantly. However, in some regions, including parts of Central Appalachia it appears that incidence of CWP has recently been on the rise. This trend is yet unexplained, but a possible factor might be changes in specific dust characteristics, such as particle composition, size or shape. Prior work in our research group has developed a standardized methodology for analyzing coal mine dust particles on polycarbonate filter media using scanning electron microscopy with energy dispersive x-ray (SEM-EDX). While the method allows individual particles to be characterized, it is very time-intensive because the instrument user must interrogate each particle manually; this limits the number of particles that can practically be characterized per sample. Moreover, results may be somewhat user-dependent since classification of particle composition involves some interpretation of EDX spectra. Respirable dust in underground coal mines has long been associated with occupational Jung diseases, particularly coal workers' pneumoconiosis (CWP) and silicosis. Regular dust sampling is required for assessing occupational exposures , and compliance with federal regulations is determined! on the basis of total respirable dust concentration and crystalline silica content by mass. In light of continued incidence of CWP amongst coal miners, additional information is needed to determine what role specific dust characteristics might play in health outcomes . While particle-level analysis is ideal, current time requirements and costs make this simply unfeasible for large numbers of samples. However, opportunities do exist for gleaning additional information from bulk analysis (i.e., beyond total mass and silica content) using relatively quick and inexpensive methods. Thermogravimetric analysis (TGA) may be a particularly attractive option. It involves precise sample weight measurement in a temperature controlled environment, such that weight changes over specific temperature ranges can be correlated to cheruical changes of particular sample constituents. In principle, TGA offers the ability to determine the coal and total mineral mass fractions in respirable dust samples. Such analysis could conceivably be combined with standard methods currently used to measure total mass and silica content. Under some circumstances , TGA might also be extended to provide information on specific dust constituents of interest (such as calcite). In this paper, we consider the benefits and challenges of TGA of respirable coal mine dust samples, and provide preliminary results and observations from ongoing research on this topic.en
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/10919/73748en
dc.language.isoenen
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.titleConsiderations for TGA of Respirable Coal Mine Dust Samplesen
dc.title.serial15th North American Mine Ventilation Symposiumen
dc.typeConference proceedingen
dc.type.dcmitypeTexten
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/Mining and Minerals Engineeringen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ScaggsSarver2015.pdf
Size:
2.34 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: