Uniform L¹ behavior for the solution of a volterra equation with a parameter

dc.contributor.authorNoren, Richard Dennisen
dc.contributor.committeechairHannsgen, Kenneth B.en
dc.contributor.committeememberWheeler, Roberten
dc.contributor.committeememberPrather, Carlen
dc.contributor.committeememberHerdman, Terry L.en
dc.contributor.committeememberMcCoy, Robert A.en
dc.contributor.departmentMathematicsen
dc.date.accessioned2014-08-13T14:38:54Zen
dc.date.available2014-08-13T14:38:54Zen
dc.date.issued1985en
dc.description.abstractThe solution u=u(t)=u(t,λ) of (E) u′(t)+λ∫<sub>0</sub><sup>t</sup>u(t-τ)(d+a(τ))dτ=0, u(0)=1, t ≥ 0, λ ≥ 1 where d ≥ 0, a is nonnegative, nonincreasing, convex and ∞ ≥ a(0+) > a(∞) = 0 is studied. In particular the question asked is: When is (F) ∫<sub>0</sub><sup>∞</sup><sub>λ ≥ 1</sub><sup>sup</sup>|u′′(t, λ)/λ|dt < ∞? We obtain two necessary conditions for (F). For (F) to hold, it is necessary that (-lnt)a(τ)∈L¹(0,1) and lim sup <sub>τ→∞</sub> (τθ(τ))²/φ(τ) <∞ where â(τ)=∫<sub>0</sub><sup>∞</sup>e<sup>-iτt</sup>a(t)dt=φ(τ)-iτθ(τ) (φ,θ both real). We obtain sufficient conditions for (F) to hold which involve φ and θ (See Theorem 7). Then we look for direct conditions on a which imply (F). with the addition assumption -a′ is convex, we prove that (F) holds provided any one of the following hold: (i) a(0+)<∞, (ii) 0<lim inf <sub>τ→∞</sub> τ∫<sub>0</sub><sup>1/τ</sup>sa(s)ds / ∫<sub>0</sub><sup>1/τ</sup>-sa′(s)ds ≤ lim sup <sub>τ→∞</sub> τ∫<sub>0</sub><sup>1/τ</sup>sa(s)ds / ∫<sub>0</sub><sup>1/τ</sup>-sa′(s)ds < ∞, (iii) lim <sub>τ→∞</sub> τ∫<sub>0</sub><sup>1/τ</sup>sa(s)ds / ∫<sub>0</sub><sup>1/τ</sup>a(s)ds = 0, (iv) lim <sub>τ→∞</sub> ∫<sub>0</sub><sup>1/τ</sup>-sa′(s)ds / ∫<sub>0</sub><sup>1/τ</sup>a(s)ds = 0, a²(t)/-a′(t) is increasing for small t and a²(t) / -ta′(t)∈L¹(0,∈) for some ∈>0, (v) lim <sub>τ→∞</sub> ∫<sub>0</sub><sup>1/τ</sup>-sa′(s)ds / ∫<sub>0</sub><sup>1/τ</sup>a(s)ds = 0 and τ(∫<sub>0</sub><sup>1/τ</sup> a(s)ds)³ / ∫<sub>0</sub><sup>1/τ</sup>-sa′(s)ds ≤ M < ∞ for δ ≤ τ < ∞ (some δ > 0). Thus (F) holds for wide classes of examples. In particular, (F) holds when d+a(t) = t<sup>-p</sup>, 0 < p < 1; a(t)+d = -lnt (small t); a(t)+d = t⁻¹(-lnt)<sup>-q</sup>, q > 2 (small t).en
dc.description.adminincomplete_metadataen
dc.description.degreePh. D.en
dc.format.extentiii, 69 leaves ;en
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/10919/49966en
dc.publisherVirginia Polytechnic Institute and State Universityen
dc.relation.isformatofOCLC# 13131395en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.lccLD5655.V856 1985.N673en
dc.subject.lcshVolterra equationsen
dc.subject.lcshHilbert spaceen
dc.subject.lcshL1 algebrasen
dc.titleUniform L¹ behavior for the solution of a volterra equation with a parameteren
dc.typeDissertationen
dc.type.dcmitypeTexten
thesis.degree.disciplineMathematicsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LD5655.V856_1985.N673.pdf
Size:
1.34 MB
Format:
Adobe Portable Document Format
Description: