Uniform L¹ behavior for the solution of a volterra equation with a parameter
dc.contributor.author | Noren, Richard Dennis | en |
dc.contributor.committeechair | Hannsgen, Kenneth B. | en |
dc.contributor.committeemember | Wheeler, Robert | en |
dc.contributor.committeemember | Prather, Carl | en |
dc.contributor.committeemember | Herdman, Terry L. | en |
dc.contributor.committeemember | McCoy, Robert A. | en |
dc.contributor.department | Mathematics | en |
dc.date.accessioned | 2014-08-13T14:38:54Z | en |
dc.date.available | 2014-08-13T14:38:54Z | en |
dc.date.issued | 1985 | en |
dc.description.abstract | The solution u=u(t)=u(t,λ) of (E) u′(t)+λ∫<sub>0</sub><sup>t</sup>u(t-τ)(d+a(τ))dτ=0, u(0)=1, t ≥ 0, λ ≥ 1 where d ≥ 0, a is nonnegative, nonincreasing, convex and ∞ ≥ a(0+) > a(∞) = 0 is studied. In particular the question asked is: When is (F) ∫<sub>0</sub><sup>∞</sup><sub>λ ≥ 1</sub><sup>sup</sup>|u′′(t, λ)/λ|dt < ∞? We obtain two necessary conditions for (F). For (F) to hold, it is necessary that (-lnt)a(τ)∈L¹(0,1) and lim sup <sub>τ→∞</sub> (τθ(τ))²/φ(τ) <∞ where â(τ)=∫<sub>0</sub><sup>∞</sup>e<sup>-iτt</sup>a(t)dt=φ(τ)-iτθ(τ) (φ,θ both real). We obtain sufficient conditions for (F) to hold which involve φ and θ (See Theorem 7). Then we look for direct conditions on a which imply (F). with the addition assumption -a′ is convex, we prove that (F) holds provided any one of the following hold: (i) a(0+)<∞, (ii) 0<lim inf <sub>τ→∞</sub> τ∫<sub>0</sub><sup>1/τ</sup>sa(s)ds / ∫<sub>0</sub><sup>1/τ</sup>-sa′(s)ds ≤ lim sup <sub>τ→∞</sub> τ∫<sub>0</sub><sup>1/τ</sup>sa(s)ds / ∫<sub>0</sub><sup>1/τ</sup>-sa′(s)ds < ∞, (iii) lim <sub>τ→∞</sub> τ∫<sub>0</sub><sup>1/τ</sup>sa(s)ds / ∫<sub>0</sub><sup>1/τ</sup>a(s)ds = 0, (iv) lim <sub>τ→∞</sub> ∫<sub>0</sub><sup>1/τ</sup>-sa′(s)ds / ∫<sub>0</sub><sup>1/τ</sup>a(s)ds = 0, a²(t)/-a′(t) is increasing for small t and a²(t) / -ta′(t)∈L¹(0,∈) for some ∈>0, (v) lim <sub>τ→∞</sub> ∫<sub>0</sub><sup>1/τ</sup>-sa′(s)ds / ∫<sub>0</sub><sup>1/τ</sup>a(s)ds = 0 and τ(∫<sub>0</sub><sup>1/τ</sup> a(s)ds)³ / ∫<sub>0</sub><sup>1/τ</sup>-sa′(s)ds ≤ M < ∞ for δ ≤ τ < ∞ (some δ > 0). Thus (F) holds for wide classes of examples. In particular, (F) holds when d+a(t) = t<sup>-p</sup>, 0 < p < 1; a(t)+d = -lnt (small t); a(t)+d = t⁻¹(-lnt)<sup>-q</sup>, q > 2 (small t). | en |
dc.description.admin | incomplete_metadata | en |
dc.description.degree | Ph. D. | en |
dc.format.extent | iii, 69 leaves ; | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.uri | http://hdl.handle.net/10919/49966 | en |
dc.publisher | Virginia Polytechnic Institute and State University | en |
dc.relation.isformatof | OCLC# 13131395 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject.lcc | LD5655.V856 1985.N673 | en |
dc.subject.lcsh | Volterra equations | en |
dc.subject.lcsh | Hilbert space | en |
dc.subject.lcsh | L1 algebras | en |
dc.title | Uniform L¹ behavior for the solution of a volterra equation with a parameter | en |
dc.type | Dissertation | en |
dc.type.dcmitype | Text | en |
thesis.degree.discipline | Mathematics | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Ph. D. | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- LD5655.V856_1985.N673.pdf
- Size:
- 1.34 MB
- Format:
- Adobe Portable Document Format
- Description: