A Deep Learning Approach to Predict Full-Field Stress Distribution in Composite Materials

dc.contributor.authorSepasdar, Rezaen
dc.contributor.committeechairKarpatne, Anujen
dc.contributor.committeecochairShakiba, Maryamen
dc.contributor.committeememberHuang, Lifuen
dc.contributor.departmentComputer Science and Applicationen
dc.date.accessioned2021-05-21T14:59:16Zen
dc.date.available2021-05-21T14:59:16Zen
dc.date.issued2021-05-17en
dc.description.abstractThis thesis proposes a deep learning approach to predict stress at various stages of mechanical loading in 2-D representations of fiber-reinforced composites. More specifically, the full-field stress distribution at elastic and at an early stage of damage initiation is predicted based on the microstructural geometry. The required data set for the purposes of training and validation are generated via high-fidelity simulations of several randomly generated microstructural representations with complex geometries. Two deep learning approaches are employed and their performances are compared: fully convolutional generator and Pix2Pix translation. It is shown that both the utilized approaches can well predict the stress distributions at the designated loading stages with high accuracy.en
dc.description.abstractgeneralFiber-reinforced composites are material types with excellent mechanical performance. They form the major material in the construction of space shuttles, aircraft, fancy cars, etc., the structures that are designed to be lightweight and at the same time extremely stiff and strong. Due to the broad application, especially in the sensitives industries, fiber-reinforced composites have always been a subject of meticulous research studies. The research studies to better understand the mechanical behavior of these composites has to be conducted on the micro-scale. Since the experimental studies on micro-scale are expensive and extremely limited, numerical simulations are normally adopted. Numerical simulations, however, are complex, time-consuming, and highly computationally expensive even when run on powerful supercomputers. Hence, this research aims to leverage artificial intelligence to reduce the complexity and computational cost associated with the existing high-fidelity simulation techniques. We propose a robust deep learning framework that can be used as a replacement for the conventional numerical simulations to predict important mechanical attributes of the fiber-reinforced composite materials on the micro-scale. The proposed framework is shown to have high accuracy in predicting complex phenomena including stress distributions at various stages of mechanical loading.en
dc.description.degreeM.S.en
dc.format.mediumETDen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/10919/103427en
dc.language.isoen_USen
dc.publisherVirginia Techen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectDeep learning (Machine learning)en
dc.subjectCNNen
dc.subjectFull-Field Predictionen
dc.subjectImage-to-Image Translationen
dc.subjectAdversarial Learningen
dc.titleA Deep Learning Approach to Predict Full-Field Stress Distribution in Composite Materialsen
dc.typeThesisen
thesis.degree.disciplineComputer Scienceen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameM.S.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sepasdar_R_T_2021.pdf
Size:
4.15 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections