VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Fabrication and Characterization of Multifunctional Soft Composites for Hybrid Electronic Systems

dc.contributor.authorPozarycki, Tyler Anthonyen
dc.contributor.committeechairBartlett, Michael Daviden
dc.contributor.committeememberWest, Robert L.en
dc.contributor.committeememberLi, Lingen
dc.contributor.departmentMechanical Engineeringen
dc.date.accessioned2023-07-18T08:00:42Zen
dc.date.available2023-07-18T08:00:42Zen
dc.date.issued2023-07-17en
dc.description.abstractThere has been an ever-increasing need for soft, functional materials within areas of research such as soft robotics, flexible electronics, and wearable devices. These materials must be stretchable and/or flexible, thermally and electrically conductive, and robustly adhesive to a wide variety of substrates and surfaces. Over the past several decades, soft composites consisting of functional solid particles within an elastic matrix have been developed with the aim of achieving these properties. However, solid particulate fillers in elastomeric materials have various limitations which hinders the ability to achieve the aforementioned properties simultaneously. In this work, two novel approaches to developing soft conductive adhesives are introduced in an effort to solve mechanical, thermal, electrical, and adhesive trade-offs. The composites developed herein utilize liquid metal (LM) inclusions and a combination of LM with solid silver (Ag) flakes within deformable polymer matrices to maintain mechanical compliance while also achieving thermal and electrical functionality. Furthermore, adhesive properties of LM composites are enhanced through a chemical anchoring technique, while the composition and microstructure of LM-Ag composites are designed to control functional and adhesive properties. There are several demonstrations throughout which show the ability to robustly integrate the novel soft composites with rigid materials and electronic components for the creation of resilient and functional hybrid electronic systems.en
dc.description.abstractgeneralThere has been an ever-increasing need for soft, functional materials within areas of research such as soft robotics, flexible electronics, and wearable devices. These materials must be stretchable and/or flexible, thermally and electrically conductive, and robustly adhesive to a wide variety of substrates and surfaces. Over the past several decades, soft composites consisting of functional solid particles within an elastic matrix have been developed with the aim of achieving these properties. However, solid particulate fillers in elastomeric materials have various limitations which hinders the ability to achieve the aforementioned properties simultaneously. In this work, two novel approaches to developing soft conductive adhesives are introduced in an effort to solve mechanical, thermal, electrical, and adhesive trade-offs. The composites developed herein utilize liquid metal (LM) inclusions and a combination of LM with solid silver (Ag) flakes within deformable polymer matrices to maintain mechanical compliance while also achieving thermal and electrical functionality. Furthermore, adhesive properties of LM composites are enhanced through a chemical anchoring technique, while the composition and microstructure of LM-Ag composites are designed to control functional and adhesive properties. There are several demonstrations throughout which show the ability to robustly integrate the novel soft composites with rigid materials and electronic components for the creation of resilient and functional hybrid electronic systems. Fabrication and Characterization of Multifunctional Soft Composites for Hybrid Electronic Systems Tyler A. Pozarycki (GENERAL AUDIENCE ABSTRACT) Composites are materials which are made up of two or more components with characteristics that exceed their counterparts. Steel reinforced concrete is a common example, where the steel helps to reinforce the concrete while the concrete itself gives shape to the structure. One cannot exist without the other, as the steel alone would create a meaningless skeleton and the concrete alone would not be able to withstand weights of heavier objects such as vehicles. In recent years, soft composites have become an emerging paradigm. These materials are stretchable and flexible due to their main component typically being an elastomer, while their inner component can consist of various materials that give desired functionality. For example, iron particles can grant magnetic properties and carbon can allow the material to conduct heat and/or electricity. As a result, these materials have captured the interest of scientists and researchers in various fields such as robotics, electronics, and biomedicine. However, there exists a unique challenge in developing such a material for applications in these areas. That is, the material needs to possess three critical properties simultaneously: 1) it must be compliant to various surfaces, meaning it must assume complex shapes such as those found on the human body, 2) it must be able to efficiently conduct electricity and heat, and 3) it must be able to adhere, or stick strongly to a variety of surfaces and materials for assembly. Typically, solving this problem has been attempted by fabricating soft composites with inner components consisting of metallic and ceramic particles, powders, or flakes. However, the use of these materials within elastomers, gels, and the like often create a composite which falls short of the aforementioned requirements, as the rigid inner structure and soft outer material are uncomplimentary to each other. Additionally, silicone elastomers and other similar materials typically do not adhere to a wide variety of surfaces, which further complicates the problem. In this work, two novel materials are produced in an effort to solve these long-standing issues. The first utilizes room-temperature liquid metal (LM) as the inner component to preserve overall material integrity while also using a chemical anchoring process to adhere the composites to several plastics and metals. The second consists of a flexible epoxy (naturally adhesive material) which incorporates both LM and silver flakes to create an as-prepared thermally and electrically conductive adhesive. Both soft composites are shown integrated with rigid electronic components and other materials to demonstrate the feasibility of using the composites to fabricate hybrid electronic systems.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:37966en
dc.identifier.urihttp://hdl.handle.net/10919/115788en
dc.language.isoenen
dc.publisherVirginia Techen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectSoft compositesen
dc.subjectliquid metalen
dc.subjectmultiphaseen
dc.subjectadhesionen
dc.subjectsoft matter systemsen
dc.titleFabrication and Characterization of Multifunctional Soft Composites for Hybrid Electronic Systemsen
dc.typeThesisen
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Pozarycki_TA_T_2023.pdf
Size:
15.7 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Pozarycki_TA_T_2023_support_1.pdf
Size:
1.35 MB
Format:
Adobe Portable Document Format
Description:
Supporting documents

Collections