Design and thermal analysis for a novel EMCCD camera payload in a 1U CubeSat form factor

TR Number

Date

2024-06-24

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Nüvü Camēras, a Canadian company that designs a range of CCD and EMCCD cameras and controllers, recently began development on a miniaturized EMCCD controller for a CubeSat form factor. The detector for this payload requires near-cryogenic temperatures, approximately 188K, for performance operation. A temperature requirement of that magnitude for a CubeSat form factor is challenging given the low thermal mass, volume, surface area, and power availability for heat storage, dissipation and control systems that would typically be available for larger form factor spacecraft. The goal of this project is to design and per- form thermal analysis for the Nüvü Camēras CubeSat EMCCD Controller that allows for cold-biased active temperature control of both the controller electronics and detector. The EMCCD controller had an operational temperature range of −35◦C to +60◦C while the detector had a performance range of −110◦C to −85◦C with a desire to maintain a resolu- tion of ±0.25◦C. To meet these requirements, a system was designed within 3D modeling software Autodesk Inventor and imported into Thermal Desktop for thermal analysis and iteration. Models were updated based on thermal analysis results, adjusted by hand, and then tested again until a passive cooling and active heating system that met the require- ments was achieved. The final control system was shown to be capable of cooling from 20◦C (293.15K) to −85◦C (188.15K) and beyond given a Sun Synchronous orbit at 600km with attitude control and operational requirements. It was also shown to be capable of heating up, using resistive heaters on key components, beyond the thermal inertia of the system and environment, indicating viable control on orbit. In the future a PID control method can be implemented, and its use is being investigated by Nüvü Camēras for achieving the desired resolution of ±0.25◦C in the future.

Description

Keywords

CubeSat, EMCCD, thermal, camera, satellite, LEO

Citation

Collections