Functional analytic treatment of linear transport equations in kinetic theory and neutron transport theory
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The temperature-density equation of Kinetic Theory and the conservative neutron transport equation are studied. In both cases a modified version of the Larsen-Habetler resolvent integration technique is applied to obtain full-range and half-range expansions. For the neutron transport equation the method applied is seen to have notational advantages over previous approaches. In the case of the temperature-density equation this development extends previous results by enlarging the class of expandable functions and has the added advantage of rigor and simplicity. As a natural extension of the Kinetic Theory results, an integral equation for the surface density is derived for half-space problems involving the boundary condition of arbitrary accommodation.