Passivated-Electrode Insulator-Based Dielectrophoretic Chips for Rare Cell Analysis

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


The analysis of potentially harmful biological particles is imperative for the mitigation of disease. As a result, there is a growing need for tools which can characterize, detect, and separate biological particles for the alleviation of a multitude of disease. One powerful technique for the analysis of cells is the use of dielectrophoresis (DEP) forces for the manipulation of particle movement. DEP is a particle transport phenomenon, induced by the presence of non-uniform electric fields. The dependence on intrinsic electrical properties of cells, have enabled DEP force to be utilized for numerous biological analyses. This thesis presents the investigation of breast cancer, pathogen, neuronal and glial cells and their DEP profiles. The drug response of various breast cancer cell lines when exposed to a variety of chemical stimuli were analyzed using shifts in their DEP profiles in relation to control groups. These results were supplemented with gene expression analysis to identify biophysical changes which could contribute to the DEP shifts. Additional experiments were conducted for the monitoring of pathogens. Live/dead bacteria mixtures were evaluated using an integrated system with DEP enrichment and impedance spectroscopy. Another application of DEP which was investigated was the separation of heterogeneous mixtures. Through the use of a novel microfluidic channel design, the separation of simulated circulating tumor cells (CTCs) from diluted blood and neuron cells from glial cells was demonstrated. The wide range of applications examined in this thesis highlights the versatility of DEP and the flexibility of the reported devices.



Dielectrophoresis, Impedance Spectroscopy, Breast Cancer, Circulating Tumor Cells, Waterborne Pathogens, Microfluidics