Multicore Scalability Through Asynchronous Work

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


With the end of Moore's Law, computer architects have turned to multicore architecture to provide high performance. Unfortunately, to achieve higher performance, multicores require programs to be parallelized which is an untamed problem. Amdahl's law tells that the maximum theoretical speedup of a program is dictated by the size of the non-parallelizable section of a program. Hence to achieve higher performance, programmers need to reduce the size of sequential code in the program. This thesis explores asynchronous work as a means to reduce sequential portions of program. Using asynchronous work, a programmer can remove tasks which do not affect data consistency from the critical path and can be performed using background thread. Using this idea, the thesis introduces two systems. First, a synchronization mechanism, Multi-Version Read-Log-Update(MV-RLU), which extends Read-Log-Update (RLU) through multi-versioning. At the core of MV-RLU design is a concurrent garbage collection algorithm which reclaims obsolete versions asynchronously reducing blocking of threads. Second, a concurrent and highly scalable index-structure called Hydralist for multi-core. The key idea behind design of Hydralist is that an index-structure can be divided into two component (search layer and data layer) and updates to data layer can be done synchronously while updates to search layer can be propagated asynchronously using background threads.



Multicore scalability, synchonization, index structures, databases