Numerical Analysis of FFP Impact on Saturated Loose Sand
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Free-Fall Penetrometer (FFP) testing is an easy and rapid test procedure for seabed sediment characterization favorable to conventional geotechnical testing mainly due to its cost-effectiveness. Yet, FFP testing results are interpreted using empirical correlations, but difficulties arise to understand soil behavior under the high-strain rate (HSR) loading effects during rapid FFP penetration. The numerical simulation of FFP-soil interaction is also challenging. This study aims to numerically analyze FFP testing of saturated loose sands using the particle-based Material Point Method (MPM). The numerical analysis was conducted by simulating calibration chamber FFP tests on saturated loose quartz sand.
The numerical results using quasi-static properties resulted in a reaction of the sand softer than the actual calibration chamber test. This implied the necessity of considering HSR effects. After performing parametric analyses, it was concluded that dilation plays an important role in the response of sand-water mixtures. Comparison of dry and saturated simulations showed that FFP penetration increases when the soil is dry and tends to develop a general bearing capacity failure mechanism. This is because the pore water increases the stiffness of the system and due to the increased strength that develops in saturated dilative sands when negative pore pressures develop. Local bearing failure mechanism is observed in all saturated simulations. Finally, numerical CPT (quasi-static) and FFP tests were used to examine the strain rate coefficient used in practice (K); and a consistent range between 1 to 1.5 was obtained.