Towards Naturalistic Exoskeleton Glove Control for Rehabilitation and Assistance

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


This thesis presents both a control scheme for naturalistic control of an exoskeleton glove and a glove design. Exoskeleton development has been focused primarily on design, improving soft actuator and cable-driven systems, with only limited focus on intelligent control. There is a need for control that is not limited to position or force reference signals and is user-driven. By implementing a motion amplification controller to increase weak movements of an impaired individual, a finger joint trajectory can be observed and used to predict their grasping intention. The motion amplification functions off of a virtual dynamical system that safely enforces the range of motion of the finger joints and ensures stability. Three grasp prediction algorithms are developed with improved levels of accuracy: regression, trajectory, and deep learning based. These algorithms were tested on published finger joint trajectories. The fusion of the amplification and prediction could be used to achieve naturalistic, user-guided control of an exoskeleton glove. The key to accomplishing this is series elastic actuators to move the finger joints, thereby allowing the wearer to deflect against the glove and inform the controller of their intention. These actuators are used to move the fingers in a nine degree of freedom exoskeleton that is capable of achieving all the grasps used most frequently in daily life. The controllers and exoskeleton presented here are the basis for improved exoskeleton glove control that can be used to assist or rehabilitate impaired individuals.



Exoskeletons, Medical Robotics, Rehabilitation, Machine learning, Deep learning (Machine learning)