ARQUIN : Architectures for Multinode Superconducting Quantum Computers

dc.contributor.authorAng, Jamesen
dc.contributor.authorCarini, Gabriellaen
dc.contributor.authorChen, Yanzhuen
dc.contributor.authorChuang, Isaacen
dc.contributor.authorDemarco, Michaelen
dc.contributor.authorEconomou, Sophia E.en
dc.contributor.authorEickbusch, Alecen
dc.contributor.authorFaraon, Andreien
dc.contributor.authorFu, Kai-mei M.en
dc.contributor.authorGirvin, Stevenen
dc.contributor.authorHatridge, Michaelen
dc.contributor.authorHouck, Andrewen
dc.contributor.authorHilaire, Paulen
dc.contributor.authorKrsulich, Kevinen
dc.contributor.authorLi, Angen
dc.contributor.authorLiu, Chenxuen
dc.contributor.authorLiu, Yuanen
dc.contributor.authorMartonosi, Margareten
dc.contributor.authorMckay, Daviden
dc.contributor.authorMisewich, Jimen
dc.contributor.authorRitter, Marken
dc.contributor.authorSchoelkopf, Roberten
dc.contributor.authorStein, Samuelen
dc.contributor.authorSussman, Saraen
dc.contributor.authorTang, Hongen
dc.contributor.authorTang, Weien
dc.contributor.authorTomesh, Teagueen
dc.contributor.authorTubman, Normen
dc.contributor.authorWang, Chenen
dc.contributor.authorWiebe, Nathanen
dc.contributor.authorYao, Yongxinen
dc.contributor.authorYost, Dillonen
dc.contributor.authorZhou, Yiyuen
dc.date.accessioned2025-02-24T13:52:54Zen
dc.date.available2025-02-24T13:52:54Zen
dc.date.issued2024-09-19en
dc.description.abstractMany proposals to scale quantum technology rely on modular or distributed designs wherein individual quantum processors, called nodes, are linked together to form one large multinode quantum computer (MNQC). One scalable method to construct an MNQC is using superconducting quantum systems with optical interconnects. However, internode gates in these systems may be two to three orders of magnitude noisier and slower than local operations. Surmounting the limitations of internode gates will require improvements in entanglement generation, use of entanglement distillation, and optimized software and compilers. Still, it remains unclear what performance is possible with current hardware and what performance algorithms require. In this article, we employ a systems analysis approach to quantify overall MNQC performance in terms of hardware models of internode links, entanglement distillation, and local architecture. We show how to navigate tradeoffs in entanglement generation and distillation in the context of algorithm performance, lay out how compilers and software should balance between local and internode gates, and discuss when noisy quantum internode links have an advantage over purely classical links. We find that a factor of 10–100× better link performance is required and introduce a research roadmap for the co-design of hardware and software towards the realization of early MNQCs. While we focus on superconducting devices with optical interconnects, our approach is general across MNQC implementations.en
dc.description.versionSubmitted versionen
dc.format.extent59 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifierARTN 19 (Article number)en
dc.identifier.doihttps://doi.org/10.1145/3674151en
dc.identifier.eissn2643-6817en
dc.identifier.issn2643-6809en
dc.identifier.issue3en
dc.identifier.urihttps://hdl.handle.net/10919/124686en
dc.identifier.volume5en
dc.language.isoenen
dc.publisherACMen
dc.rightsPublic Domain (U.S.)en
dc.rights.urihttp://creativecommons.org/publicdomain/mark/1.0/en
dc.subjectComputing methodologiesen
dc.subjectComputer systems organizationen
dc.subjectQuantum computingen
dc.subjectQuantum computationen
dc.subjectQuantum mechanic simulationen
dc.subjectDistributed architecturesen
dc.titleARQUIN : Architectures for Multinode Superconducting Quantum Computersen
dc.title.serialACM Transactions on Quantum Computingen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/Scienceen
pubs.organisational-groupVirginia Tech/Science/Physicsen
pubs.organisational-groupVirginia Tech/All T&R Facultyen
pubs.organisational-groupVirginia Tech/Science/COS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
3674151.pdf
Size:
5.15 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: