Chemical Identification and Organoleptic Evaluation of Iodine and Iodinated Disinfection By-Products Associated with Treated Spacecraft Drinking Water

dc.contributor.authorDodd, Jennifer Petersen
dc.contributor.committeechairDietrich, Andrea M.en
dc.contributor.committeememberHoehn, Robert C.en
dc.contributor.committeememberGallagher, Daniel L.en
dc.contributor.departmentCivil Engineeringen
dc.date.accessioned2014-03-14T20:51:21Zen
dc.date.adate1997-02-11en
dc.date.available2014-03-14T20:51:21Zen
dc.date.issued1997-02-11en
dc.date.rdate1997-02-11en
dc.date.sdate1998-07-13en
dc.description.abstractAboard the International Space Station, potable water will likely be produced from recycled wastewater. The National Aeronautic and Space Administration (NASA) plans to use iodine as a disinfectant, and, consequently, the formation of iodinated disinfection by-products (IDBPs) requires investigation. Objectives of this research were to determine possible precursors of IDBPs, identify IDBPs formed, and apply flavor profile analysis (FPA) as a tool to evaluate water qaulity. Experiments were performed by separately reacting iodine with each of the following organic compounds: methanol, ethanol, 1-propanol, 2-propanol, 1-methoxy-2-propanol, acetone, and formaldehyde. NASA previously identified all of these compounds in wastewater sources under consideration for recycling into potable water. Experiments were performed at pH 5.5 and 8, iodine concentrations of 10 and 50 mg/L, and organic concentrations of 5 and 50 mg/L. Gas chromatography/mass spectrometry was used to identify and monitor the concentrations of organic species. Spectrophotometry was used to monitor the iodine concentration. Acetone was the only compound identified as an IDBP precursor and it reacted to produce iodoacetone and iodoform. Concentrations of iodoform from 0.34 mg/L to 8.637 mg/L were produced at conditions that included each pH level, iodine concentration, and acetone concentration. The greatest iodoform concentration was produced at pH 8 from 50 mg/L of iodine and acetone. FPA indicated that the odor threshold concentration (OTC) of iodoform was 1.5 ug/L, and the OTC of iodine was 500 ug/L. Both iodine and iodoform have medicinal odors, making it difficult to distinguish each compound when present in a mixture.en
dc.description.degreeMaster of Scienceen
dc.identifier.otheretd-34521672975650en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-34521672975650/en
dc.identifier.urihttp://hdl.handle.net/10919/36642en
dc.publisherVirginia Techen
dc.relation.haspartjpd3.PDFen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectflavor profile analysisen
dc.subjectiodoformen
dc.subjectiodineen
dc.subjectdisinfection by-producten
dc.titleChemical Identification and Organoleptic Evaluation of Iodine and Iodinated Disinfection By-Products Associated with Treated Spacecraft Drinking Wateren
dc.typeThesisen
thesis.degree.disciplineCivil Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
jpd3.PDF
Size:
319.62 KB
Format:
Adobe Portable Document Format

Collections