Generative Chatbot Framework for Cybergrooming Prevention
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Cybergrooming refers to the crime of establishing personal close relationships with potential victims, commonly teens, for the purpose of sexual exploitation or abuse via online social media platforms. Cybergrooming has been recognized as a serious social problem. However, there have been insufficient programs to provide proactive prevention to protect the youth users from cybergrooming. In this thesis, we present a generative chatbot framework, called SERI (Stop cybERgroomIng), that can generate simulated conversations between a perpetrator chatbot and a potential victim chatbot. To realize the simulation of authentic conversations in the context of cybergrooming, we take deep reinforcement learning (DRL)-based dialogue generation to simulate the authentic conversations between a perpetrator and a potential victim. The design and development of the SERI are motivated to provide a safe and authentic chatting environment to enhance the youth's precautionary awareness and sensitivity of cybergrooming while any unnecessary ethical issues (e.g., the potential misuse of the SERI) are removed or minimized. We developed the SERI as a preliminary platform that the perpetrator chatbot can be deployed in social media environments to interact with human users (i.e., youth) and observe the conversations that the youth users respond to strangers or acquaintances when they are asked for private or sensitive information by the perpetrator. We evaluated the quality of conversations generated by the SERI based on open-source, referenced, and unreferenced metrics as well as human evaluation. The evaluation results show that the SERI can generate authentic conversations between two chatbots compared to the original conversations from the used datasets in perplexity and MaUde scores.