A Kruskal-Katona theorem for cubical complexes
dc.contributor.author | Ellis, Robert B. | en |
dc.contributor.committeechair | Day, Martin V. | en |
dc.contributor.committeemember | Brown, Ezra A. | en |
dc.contributor.committeemember | Haskell, Peter E. | en |
dc.contributor.department | Mathematics | en |
dc.date.accessioned | 2014-03-14T21:47:06Z | en |
dc.date.adate | 2005-10-07 | en |
dc.date.available | 2014-03-14T21:47:06Z | en |
dc.date.issued | 1996-06-06 | en |
dc.date.rdate | 2005-10-07 | en |
dc.date.sdate | 2005-10-07 | en |
dc.description.abstract | The optimal number of faces in cubical complexes which lie in cubes refers to the maximum number of faces that can be constructed from a certain number of faces of lower dimension, or the minimum number of faces necessary to construct a certain number of faces of higher dimension. If <i>m</i> is the number of faces of <i>r</i> in a cubical complex, and if s > r(s < r), then the maximum(minimum) number of faces of dimension s that the complex can have is m<sub>(s/r)</sub> +. (m-m<sub>(r/r)</sub>)<sup>(s/r)</sup>, in terms of upper and lower semipowers. The corresponding formula for simplicial complexes, proved independently by J. B. Kruskal and G. A. Katona, is m<sup>(s/r)</sup>. A proof of the formula for cubical complexes is given in this paper, of which a flawed version appears in a paper by Bernt Lindstrijm. The n-tuples which satisfy the optimaiity conditions for cubical complexes which lie in cubes correspond bijectively with f-vectors of cubical complexes. | en |
dc.description.degree | Master of Science | en |
dc.format.extent | v, 53 leaves | en |
dc.format.medium | BTD | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.other | etd-10072005-094842 | en |
dc.identifier.sourceurl | http://scholar.lib.vt.edu/theses/available/etd-10072005-094842/ | en |
dc.identifier.uri | http://hdl.handle.net/10919/45075 | en |
dc.language.iso | en | en |
dc.publisher | Virginia Tech | en |
dc.relation.haspart | LD5655.V855_1996.E455.pdf | en |
dc.relation.isformatof | OCLC# 36268561 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | cubical | en |
dc.subject | simplicial | en |
dc.subject | comples | en |
dc.subject | Lindstrom | en |
dc.subject | Kruskal | en |
dc.subject.lcc | LD5655.V855 1996.E455 | en |
dc.title | A Kruskal-Katona theorem for cubical complexes | en |
dc.type | Thesis | en |
dc.type.dcmitype | Text | en |
thesis.degree.discipline | Mathematics | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | masters | en |
thesis.degree.name | Master of Science | en |
Files
Original bundle
1 - 1 of 1