Optical Field Instrumentation for Characterizing Particle Sampling Sensors
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Particle ingestion in gas turbine applications can be detrimental to performance and pose significant safety concerns. Areas of high sand concentration are hazardous to aircraft, requiring precautions like routine inspections and maintenance. The engine failure modes are dependent on particle composition, concentration, and size. Particles containing certain minerals tend to melt and stick to turbine blades, which is known as glazing. Alternatively, particles may erode blades from repeated collisions, or they may fill cooling passage holes. Therefore, it is necessary to develop systems that identify these parameters as particles are ingested. This thesis introduces three separate systems responsible for collecting sand concentration, size distribution, and material composition of sand. A particle visualization technique (ParVis), developed at Virginia Tech, was used to validate two sensors developed by commercial partners. One sensor measures particle size and velocity with a method similar to Laser Doppler Velocimetry (LDV). The second sensor measures particle composition with X-Ray Fluorescence (XRF) by physically sampling particles in a flow. There has been little research on applying XRF to moving particles, so experimental data were collected to demonstrate the effectiveness of the sensor. Detection comparisons between two particle types showed promising outcomes for the XRF. Meanwhile, the ParVis technique was iterated to overcome previous limitations and implemented into the testing process to provide particle concentration measurements. Particularly, improvements led to increased accuracy and reliability of the method such as reducing variance in concentration approximations.