Solution Blow Spinning of High-Performance Submicron Polyvinylidene Fluoride Fibres: Computational Fluid Mechanics Modelling and Experimental Results
dc.contributor.author | Atif, Rasheed | en |
dc.contributor.author | Combrinck, Madeleine | en |
dc.contributor.author | Khaliq, Jibran | en |
dc.contributor.author | Hassanin, Ahmed H. | en |
dc.contributor.author | Shehata, Nader | en |
dc.contributor.author | Elnabawy, Eman | en |
dc.contributor.author | Shyha, Islam | en |
dc.date.accessioned | 2020-05-29T11:57:54Z | en |
dc.date.available | 2020-05-29T11:57:54Z | en |
dc.date.issued | 2020-05-16 | en |
dc.date.updated | 2020-05-28T14:07:49Z | en |
dc.description.abstract | Computational fluid dynamics (CFD) was used to investigate characteristics of high-speed air as it is expelled from a solution blow spinning (SBS) nozzle using a k-ε turbulence model. Air velocity, pressure, temperature, turbulent kinetic energy and density contours were generated and analysed in order to achieve an optimal attenuation force for fibre production. A bespoke convergent nozzle was used to produce polyvinylidene fluoride (PVDF) fibres at air pressures between 1 and 5 bar. The nozzle comprised of four parts: a polymer solution syringe holder, an air inlet, an air chamber, and a cap that covers the air chamber. A custom-built SBS setup was used to produce PVDF submicron fibres which were consequently analysed using scanning electron microscope (SEM) for their morphological features. Both theoretical and experimental observations showed that a higher air pressure (4 bar) is more suitable to achieve thin fibres of PVDF. However, fibre diameter increased at 5 bar and intertwined ropes of fibres were also observed. | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Atif, R.; Combrinck, M.; Khaliq, J.; Hassanin, A.H.; Shehata, N.; Elnabawy, E.; Shyha, I. Solution Blow Spinning of High-Performance Submicron Polyvinylidene Fluoride Fibres: Computational Fluid Mechanics Modelling and Experimental Results. Polymers 2020, 12, 1140. | en |
dc.identifier.doi | https://doi.org/10.3390/polym12051140 | en |
dc.identifier.uri | http://hdl.handle.net/10919/98598 | en |
dc.language.iso | en | en |
dc.publisher | MDPI | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | CFD | en |
dc.subject | SBS | en |
dc.subject | nozzle | en |
dc.subject | PVDF | en |
dc.subject | fibres | en |
dc.title | Solution Blow Spinning of High-Performance Submicron Polyvinylidene Fluoride Fibres: Computational Fluid Mechanics Modelling and Experimental Results | en |
dc.title.serial | Polymers | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.dcmitype | StillImage | en |