Pesticide Mixtures Induce Immunotoxicity: Potentiation of Apoptosis and Oxidative Stress

TR Number

Date

2001-07-10

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

The three insecticides of interest were lindane (an organochlorine), malathion (an organophosphate) and piperonyl butoxide (PBO; a synergist). Based on minimum cytotoxicity (> LC25), the following concentrations were chosen for the pesticide mixture studies: 70μM lindane (Lind), 50μM malathion (Mal) and 55μM PBO. In the AlamarBlue cytotoxicity assay, individual pesticide and mixtures of malathion/PBO (MP) and malathion/lindane (ML) prompted cytotoxicity with varying intensities (Mal 18.8%, Lind 20.4%, PBO 23.5%, ML 53.6% and MP 64.9%). Cytopathological analysis revealed apoptotic features in treated cells and the DNA Ladder Assay confirmed the presence of DNA fragments. The specific mode of cell death was examined via the 7-aminoactinomycin D (7-AAD) Staining Assay. Apoptosis was detected in each treatment (Mal 6.5%, Lind 12.0%, PBO 13.2%, ML 19.3% and MP 23.4%). Furthermore, 7-AAD staining in combination with fluorescent-labeled monoclonal antibodies, PE-CD45RB/220 and FITC-CD90, was performed. B-cells were more susceptible to Mal and PBO treatments than were T-cells. The pro-oxidant activity of the pesticides was monitored via the Dichlorofluorescin Diacetate assay. Exposure to pesticides for 15 minutes increased H2O2 production above the controls, Mal 21.1%; Lind 10.8%; PBO 25.9%; ML 26.8%; MP 37.8%. The activities of antioxidant enzymes, glutathione peroxidase (GSH-Px) and glutathione reductase (GR) were altered by these treatments. GR was significantly reduced for the pesticide mixtures only (control: 51.7; Mal: 48.2; Lind: 50; PBO: 52.3; ML: 40.5; MP: 42 Units/mg). GSH-Px activity was severely reduced for all the pesticide treatments (control: 44.9; Mal: 30.2; Lind: 30.6; PBO: 32.4; ML: 21.1; MP: 21.1 Units/mg). These results indicate that exposure to these pesticide and pesticide mixtures induces apoptosis and oxidative stress.

Description

Keywords

antioxidant enzymes, pesticides, lindane, malathion, piperonyl butoxide, Apoptosis, splenocytes, in vitro, superoxide dismutase, glutathione peroxidase, immune cells, catalase, glutathione reductase, cytotoxicity, chemical mixtures, oxidative stress

Citation

Collections