Functional characterization of NAC-domain transcription factors implicated in control of vascular cell differentiation in Arabidopsis and Populus

TR Number
Date
2008-12-10
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Wood has a wide variety of uses and is arguably the most important renewable raw material. The composition of xylem cell types in wood determines the utility of different types of wood for distinct commercial applications. Using expression profiling and phylogenetic analysis, we identified many xylem-associated regulatory genes that may control the differentiation of cells involved in wood formation in Arabidopsis and poplar. Prominent among these are NAC-domain transcription factors (NACs). In addition to their roles as regulators of xylem differentiation, NACs are regulators of meristem development, organ elongation and separation. We studied a subset of Populus and Arabidopsis NACs with putative involvement in xylem cell expansion and elongation (XND1/ANAC104, PopNAC118, PopNAC122, PopNAC128, PopNAC129), and secondary cell wall synthesis (ANAC073, PopNAC105, PopNAC154, PopNAC156, PopNAC157). Using quantitative Real-Time PCR, we evaluated expression of the selected Populus NACs in a developmental gradient and in response to bending stress. We prepared transgenic Arabidopsis and Populus plants with increased or decreased expression of select NAC genes. For dominant repression of target gene expression, we evaluated transgenic plants expressing translational fusions of NAC-EAR (ERF amphiphilic repressor) chimeras through chimeric repressor silencing-technology (CRES-T). XND1 overexpression in Populus and Arabidopsis resulted in severe stunting and suppression of xylem differentiation. Overexpression of PopNAC122, an XND1 ortholog, yielded an analogous phenotype in Arabidopsis. Populus XND1 overexpressors lacked phloem fibers and showed a reduction in cell size and number, vessel number and frequency of rays. Knowledge gained through characterization of these wood-associated regulatory genes can be used to optimize molecular breeding and genetic engineering strategies for improved wood quality and increased biomass.

Description
Keywords
xylem, Arabidopsis thaliana, NACs, transcription factor, Wood, Populus trichocarpa
Citation
Collections