CFD – DEM Modeling and Parallel Implementation of Three Dimensional Non- Spherical Particulate Systems

TR Number

Date

2019-07-18

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Particulate systems in practical applications such as biomass combustion, blood cellular systems and granular particles in fluidized beds, have often been computationally represented using spherical surfaces, even though the majority of particles in archetypal fluid-solid systems are non-spherical. While spherical particles are more cost-effective to simulate, notable deficiencies of these implementations are their substantial inaccuracies in predicting the dynamics of particle mixtures. Alternatively, modeling dense fluid-particulate systems using non-spherical particles involves increased complexity, with computational cost manifesting as the biggest bottleneck. However, with recent advancements in computer hardware, simulations of three-dimensional particulate systems using irregular shaped particles have garnered significant interest.

In this research, a novel Discrete Element Method (DEM) model that incorporates geometry definition, collision detection, and post-collision kinematics has been developed to accurately simulate non-spherical particulate systems. Superellipsoids, which account for 80% of particles commonly found in nature, are used to represent non-spherical shapes. Collisions between these particles are processed using a distance function computation carried out with respect to their surfaces. An event - driven model and a time-driven model have been employed in the current framework to resolve collisions. The collision model's influence on non–spherical particle dynamics is verified by observing the conservation of momentum and total kinetic energy. Furthermore, the non-spherical DEM model is coupled with an in-house fluid flow solver (GenIDLEST). The combined CFD-DEM model's results are validated by comparing to experimental measurements in a fluidized bed. The parallel scalability of the non-spherical DEM model is evaluated in terms of its efficiency and speedup. Major factors affecting wall clock time of simulations are analyzed and an estimate of the model's dependency on these factors is documented. The developed framework allows for a wide range of particle geometries to be simulated in GenIDLEST.

Description

Keywords

Computational fluid dynamics, Discrete Element Modeling, Non – Spherical Particles, Impulse Collision Response, Parallel Computing, Collision Detection, Event-driven Hard Sphere, Time-driven Soft Sphere

Citation

Collections