Exploration of Respirable Dust Particles Sourced From Rock Strata in an Underground Coal Mine

dc.contributor.authorGonzalez Jaramillo, Jonathanen
dc.contributor.committeechairSarver, Emily A.en
dc.contributor.committeememberKeles, Cigdemen
dc.contributor.committeememberLuxbacher, Kramer Davisen
dc.contributor.committeememberGhaychi Afrouz, Setarehen
dc.contributor.departmentMining Engineeringen
dc.date.accessioned2021-11-13T09:00:21Zen
dc.date.available2021-11-13T09:00:21Zen
dc.date.issued2021-11-12en
dc.description.abstractEnactment of regulatory standards for respirable coal mine dust (RCMD) concentration and crystalline silica content, and advancements in mine ventilation and dust controls led to a steady decline of occupational lung disease among US coal miners between the early 1970s and the mid-1990s. Since that time, there has been an alarming resurgence of disease especially in central Appalachia—with little hard data to pinpoint the causative factors in the mine environment. This situation has emphasized the knowledge gap surrounding specific dust characteristics and their sources. Key observations from many disease cases have suggested that dust constituents sourced from the rock strata in the mine (i.e., the rock layers that surround the target coal seam) may be particularly important; and this fits with the general tendency to extract thinner coal seams, and thus more rock, in many central Appalachian mines. To explore the characteristics of rock-strata sourced dust and its possible influence on the overall RCMD, this thesis reports two primary research efforts: Chapter 1 encompasses a case study conducted in an underground coal mine in West Virginia. (This chapter was previously published in the proceedings of the 18th North American Mine Ventilation Symposium, and is being reproduced with permission of the licensor through.) Following precedent from other studies, respirable dust samples were collected from key locations including in the intake airway, downwind an operating roof bolter, and adjacent to the feeder breaker. Additionally, three locations downwind the production face were simultaneously sampled during four individual continuous miner cuts—which was a unique feature of the current study. Dust was analyzed using previously established methods, including scanning electron microscopy with energy dispersive X-ray (SEM-EDX) to determine particle size and mineralogy distributions. Where comparable, results were generally consistent with those from other central Appalachian mines. However, the unique production sampling scheme offered new insights regarding the shift in particle characteristics as dust moves downwind from the generation point. Changes in size and mineralogy suggested that rock-strata sourced particles, especially aluminosilicates, might interfere with the SEM-EDX classification of other particles, especially coal. To explore the issue of aluminosilicate interference with coal classification, and the possible reasons, Chapter 2 covers two main lines of study. First, existing RCMD samples and SEM-EDX metadata were re-examined. Results suggested that particle loading effects could be at least partly responsible for the appearance of inordinately high aluminosilicate abundance (and conversely low coal) in some samples (i.e., the mineral particles might deposit on the sample filter in close proximity to the coal). Additionally, the presence of coal-mineral microagglomerates (MAGs) was demonstrated. The second line of study in Chapter 2 was therefore to explore whether MAG formation could be due to the RCMD generation process or environmental conditions—rather than merely an artifact of the sampling procedure—and the dispersibility of MAGs, which may have important implications with respect to dust exposure and biological response. Laboratory-generated samples collected passively demonstrated that coal-mineral MAGs can indeed occur without influence from typical RCMD sampling equipment. MAGs were significantly dispersed by sonication in deionized water, though gentle swirling did not yield consistent results. Moreover, in a surfactant solution that mimics natural lung fluid, MAGs were also dispersed. Compared to deionized water, the surfactant may promote more dispersion of coal particles in particular.en
dc.description.abstractgeneralOccupational illnesses such as black lung in underground coal mining are still a worrisome issue in the industry. This research was aimed at gaining insight into rock-strata sourced dust and its possible influence on the overall characteristics of respirable coal mine dust (RCMD). The rock strata surrounding the coal seam is often rich in silicates and silica. A case study of RCMD was conducted in a thin-seam mine in West Virginia. Samples were collected in various locations and analyzed using electron microscopy among other methods. Results indicated that mineral dust, especially aluminosilicates, can be very abundant near the production face and might interfere with the measurement of coal dust. To explore such interference, a follow-up study was performed by revisiting a subset of RCMD samples examined in prior work. This approach yielded evidence of coal-mineral microagglomerates. Additional efforts in the laboratory recreated agglomerate formation and demonstrated their dispersibility. Results suggested that the occurrence of microagglomerates is not entirely a direct consequence of the sampling methodology and highlighted their potential importance within the context of exposure assessment and possible biological response.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:32893en
dc.identifier.urihttp://hdl.handle.net/10919/106642en
dc.language.isoenen
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectRespirable coal mine dusten
dc.subjectSEM-EDXen
dc.subjectMicroagglomeratesen
dc.subjectOccupational healthen
dc.titleExploration of Respirable Dust Particles Sourced From Rock Strata in an Underground Coal Mineen
dc.typeThesisen
thesis.degree.disciplineMining Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Gonzalez_Jaramillo_J_T_2021.pdf
Size:
4.83 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Gonzalez_Jaramillo_J_T_2021_support_1.pdf
Size:
271.17 KB
Format:
Adobe Portable Document Format
Description:
Supporting documents

Collections