A Shape-Constrained Neural Data Fusion Network for Health Index Construction and Residual Life Prediction

Files

TR Number

Date

2021-11-01

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE

Abstract

With the rapid development of sensor technologies, multisensor signals are now readily available for health condition monitoring and remaining useful life (RUL) prediction. To fully utilize these signals for a better health condition assessment and RUL prediction, health indices are often constructed through various data fusion techniques. Nevertheless, most of the existing methods fuse signals linearly, which may not be sufficient to characterize the health status for RUL prediction. To address this issue and improve the predictability, this article proposes a novel nonlinear data fusion approach, namely, a shape-constrained neural data fusion network for health index construction. Especially, a neural network-based structure is employed, and a novel loss function is formulated by simultaneously considering the monotonicity and curvature of the constructed health index and its variability at the failure time. A tailored adaptive moment estimation algorithm (Adam) is proposed for model parameter estimation. The effectiveness of the proposed method is demonstrated and compared through a case study using the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) data set.

Description

Keywords

Technology, Computer Science, Artificial Intelligence, Computer Science, Hardware & Architecture, Computer Science, Theory & Methods, Engineering, Electrical & Electronic, Computer Science, Engineering, Indexes, Degradation, Data integration, Neural networks, Condition monitoring, Engines, Atmospheric modeling, health index, neural data fusion network, remaining useful life (RUL) prediction, shape constrained, DEGRADATION SIGNAL, PROGNOSTICS, SUBJECT, MODEL, Artificial Intelligence & Image Processing

Citation