A Shape-Constrained Neural Data Fusion Network for Health Index Construction and Residual Life Prediction
dc.contributor.author | Li, Zhen | en |
dc.contributor.author | Wu, Jianguo | en |
dc.contributor.author | Yue, Xiaowei | en |
dc.date.accessioned | 2021-12-10T19:49:58Z | en |
dc.date.available | 2021-12-10T19:49:58Z | en |
dc.date.issued | 2021-11-01 | en |
dc.date.updated | 2021-12-10T19:49:56Z | en |
dc.description.abstract | With the rapid development of sensor technologies, multisensor signals are now readily available for health condition monitoring and remaining useful life (RUL) prediction. To fully utilize these signals for a better health condition assessment and RUL prediction, health indices are often constructed through various data fusion techniques. Nevertheless, most of the existing methods fuse signals linearly, which may not be sufficient to characterize the health status for RUL prediction. To address this issue and improve the predictability, this article proposes a novel nonlinear data fusion approach, namely, a shape-constrained neural data fusion network for health index construction. Especially, a neural network-based structure is employed, and a novel loss function is formulated by simultaneously considering the monotonicity and curvature of the constructed health index and its variability at the failure time. A tailored adaptive moment estimation algorithm (Adam) is proposed for model parameter estimation. The effectiveness of the proposed method is demonstrated and compared through a case study using the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) data set. | en |
dc.description.version | Accepted version | en |
dc.format.extent | Pages 5022-5033 | en |
dc.format.extent | 12 page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1109/TNNLS.2020.3026644 | en |
dc.identifier.eissn | 2162-2388 | en |
dc.identifier.issn | 2162-237X | en |
dc.identifier.issue | 11 | en |
dc.identifier.pmid | 33027006 | en |
dc.identifier.uri | http://hdl.handle.net/10919/106927 | en |
dc.identifier.volume | 32 | en |
dc.language.iso | en | en |
dc.publisher | IEEE | en |
dc.relation.uri | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000711638200024&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Technology | en |
dc.subject | Computer Science, Artificial Intelligence | en |
dc.subject | Computer Science, Hardware & Architecture | en |
dc.subject | Computer Science, Theory & Methods | en |
dc.subject | Engineering, Electrical & Electronic | en |
dc.subject | Computer Science | en |
dc.subject | Engineering | en |
dc.subject | Indexes | en |
dc.subject | Degradation | en |
dc.subject | Data integration | en |
dc.subject | Neural networks | en |
dc.subject | Condition monitoring | en |
dc.subject | Engines | en |
dc.subject | Atmospheric modeling | en |
dc.subject | health index | en |
dc.subject | neural data fusion network | en |
dc.subject | remaining useful life (RUL) prediction | en |
dc.subject | shape constrained | en |
dc.subject | DEGRADATION SIGNAL | en |
dc.subject | PROGNOSTICS | en |
dc.subject | SUBJECT | en |
dc.subject | MODEL | en |
dc.subject | Artificial Intelligence & Image Processing | en |
dc.title | A Shape-Constrained Neural Data Fusion Network for Health Index Construction and Residual Life Prediction | en |
dc.title.serial | IEEE Transactions on Neural Networks and Learning Systems | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Article | en |
dc.type.other | Journal | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Industrial and Systems Engineering | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- P16-A Shape Constained Neural Data Fusion Network.pdf
- Size:
- 1.63 MB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted version