Implementation of Instantaneous Frequency Estimation based on Time-Varying AR Modeling

TR Number
Journal Title
Journal ISSN
Volume Title
Virginia Tech

Instantaneous Frequency (IF) estimation based on time-varying autoregressive (TVAR) modeling has been shown to perform well in practical scenarios when the IF variation is rapid and/or non-linear and only short data records are available for modeling. A challenging aspect of implementing IF estimation based on TVAR modeling is the efficient computation of the time-varying coefficients by solving a set of linear equations referred to as the generalized covariance equations. Conventional approaches such as Gaussian elimination or direct matrix inversion are computationally inefficient for solving such a system of equations especially when the covariance matrix has a high order.

We implement two recursive algorithms for efficiently inverting the covariance matrix. First, we implement the Akaike algorithm which exploits the block-Toeplitz structure of the covariance matrix for its recursive inversion. In the second approach, we implement the Wax-Kailath algorithm that achieves a factor of 2 reduction over the Akaike algorithm in the number of recursions involved and the computational effort required to form the inverse matrix.

Although a TVAR model works well for IF estimation of frequency modulated (FM) components in white noise, when the model is applied to a signal containing a finitely correlated signal in addition to the white noise, estimation performance degrades; especially when the correlated signal is not weak relative to the FM components. We propose a decorrelating TVAR (DTVAR) model based IF estimation and a DTVAR model based linear prediction error filter for FM interference rejection in a finitely correlated environment. Simulations show notable performance gains for a DTVAR model over the TVAR model for moderate to high SIRs.

Narrowband Interference Mitigation, Block Toeplitz Inversion, Instantaneous Frequency Estimation, Time-Varying Autoregressive Modeling