Effects of habitat and plant volatiles on mosquito spatial, seasonal, and chemical ecology
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Mosquitoes, by transmitting vector-borne diseases through their saliva, impact nearly half of the world's population. Mosquito survival is dependent on their sense of smell, or olfaction, which allows a mosquito to differentiate between plant nectar, required for metabolic processes, and host odors, which will help them navigate towards hosts, source of the blood required for producing eggs. Mosquitoes interpret and respond to chemical volatiles very differently depending on their environment (temperature, humidity, time of day, etc.) and species-specific host preferences (humans, mammals, etc.). However, the impact of ecological factors on mosquito prevalence, sugar-feeding, and host seeking is relatively unknown. In an attempt to address this knowledge gap, we first investigate how several ecological factors (i.e., temporal, seasonal, and topographical) affect mosquito sugar feeding and population dynamics. Second, we focused on the anthropophilic mosquito species Aedes aegypti to investigate the role of plant associated compounds in host-seeking behavior, such as those which are commonly found in personal care products (i.e., body washes). Our results demonstrate that several ecological factors alter mosquito prevalence and behavior, including both sugar and host seeking behaviors. We anticipate these results to be a starting point for mosquito control strategies that depend not only on olfactory perception of plant odors, but also on the ecological and species-specific characteristics which shape the dynamics of vector-borne diseases.