Methods of Computing Functional Gains for LQR Control of Partial Differential Equations

dc.contributor.authorHulsing, Kevin P.en
dc.contributor.committeechairBurns, John A.en
dc.contributor.committeememberHerdman, Terry L.en
dc.contributor.committeememberCliff, Eugene M.en
dc.contributor.committeememberBorggaard, Jeffrey T.en
dc.contributor.committeememberKing, Belinda B.en
dc.contributor.departmentMathematicsen
dc.date.accessioned2014-03-14T20:20:49Zen
dc.date.adate2000-01-09en
dc.date.available2014-03-14T20:20:49Zen
dc.date.issued1999-10-12en
dc.date.rdate2001-01-09en
dc.date.sdate1999-12-17en
dc.description.abstractThis work focuses on a comparison of numerical methods for linear quadratic regulator (LQR) problems defined by parabolic partial differential equations. In particular, we study various methods for computing functional gains to boundary control problems for the heat equation. These methods require us to solve various equations including the algebraic Riccati equation, the Riccati partial differential equation and the Chandrasekhar partial differential equations. Numerical results are presented for control of a one-dimensional and a two-dimensional heat equation with Dirichlet or Robin boundary control.en
dc.description.degreePh. D.en
dc.identifier.otheretd-121799-163931en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-121799-163931/en
dc.identifier.urihttp://hdl.handle.net/10919/30139en
dc.publisherVirginia Techen
dc.relation.haspartetd.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectRiccati equationsen
dc.subjectChandrasekhar equationsen
dc.subjectboundary controlen
dc.subjectheat equationen
dc.subjectLQR problemen
dc.titleMethods of Computing Functional Gains for LQR Control of Partial Differential Equationsen
dc.typeDissertationen
thesis.degree.disciplineMathematicsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
etd.pdf
Size:
1.14 MB
Format:
Adobe Portable Document Format