Sediment Oxygen Demand Kinetics

TR Number

Date

2007-04-24

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Hypolimnetic oxygen diffusers increase sediment oxygen demand (SOD) and, if not accounted for in design, can further exacerbate anoxic conditions. A study using extracted sediment cores, that included both field and laboratory experiments, was performed to investigate SOD kinetics in Carvin's Cove Reservoir, a eutrophic water supply reservoir for Roanoke, Virginia. A bubble-plume diffuser is used in Carvin's Cove to replenish oxygen consumed while the reservoir is thermally stratified. The applicability of zero-order, first-order, and Monod kinetics to describe transient and steady state SOD was modeled using analytical and numerical techniques. Field and laboratory experiments suggested that first-order kinetics characterize Carvin's Cove SOD. SOD calculated from field experiments reflected diffuser flow changes. Laboratory experiments using mini-diffusers to vary dissolved oxygen concentration and turbulence were conducted at 4°C and 20°C. Similar to field observations, the laboratory results followed changes in mini-diffuser flow. Kinetic-temperature relationships were also observed in the laboratory experiments. A definitive conclusion could not be made on the broad applicability of first-order kinetics to Carvin's Cove SOD due to variability within field experiments. However, in situ experiments are underway that should assist in the overall understanding of the reservoir's SOD kinetics.

Description

Keywords

diffusion, Monod, zero-order, first-order, model

Citation

Collections