A Plug-in Hybrid Electric Vehicle Loss Model to Compare Well-to-Wheel Energy Use from Multiple Sources

dc.contributor.authorJohnson, Kurt M.en
dc.contributor.committeechairNelson, Douglas J.en
dc.contributor.committeememberReinholtz, Charles F.en
dc.contributor.committeememberEllis, Michael W.en
dc.contributor.departmentMechanical Engineeringen
dc.date.accessioned2014-03-14T20:41:19Zen
dc.date.adate2008-07-16en
dc.date.available2014-03-14T20:41:19Zen
dc.date.issued2008-07-07en
dc.date.rdate2008-07-16en
dc.date.sdate2008-07-11en
dc.description.abstractHybrid electric vehicles (HEV) come in many sizes and degrees of hybridization. Mild hybrid systems, where a simple idle stop strategy is employed, eliminate fuel use for idling. Multiple motor hybrid systems with complex electrically continuously variable transmissions in passenger cars, SUVs and light duty trucks have large increases in fuel economy. The plug-in hybrid electric vehicle (PHEV) takes the electrification of the automobile one step further than the HEV by increasing the battery energy capacity. The additional capacity of the battery is used to propel the vehicle without using onboard fuel energy. Commercial software of great complexity and limited availability is often used with sophisticated models to simulate powertrain operation. A simple method of evaluating technologies, component sizes, and alternative fuels is the goal of the model presented here. The objective of this paper is to define a PHEV model for use in the EcoCAR competition series. E85, gaseous hydrogen, and grid electricity are considered. The powertrain architecture selected is a series plug-in hybrid electric vehicle (SPHEV). The energy for charge sustaining operation is converted from fuel in an auxiliary power unit (APU). Compressed hydrogen gas is converted to electricity via the use of a fuel cell system and boost converter. For E85, the APU is an engine coupled to a generator. The results of modeling the vehicle allow for the comparison of the new architecture to the stock vehicle. In combination with the GREET model developed by Argonne National Lab, the multiple energy sources are compared for well to wheel energy use, petroleum energy use, and greenhouse gas emissions.en
dc.description.degreeMaster of Scienceen
dc.identifier.otheretd-07112008-174957en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-07112008-174957/en
dc.identifier.urihttp://hdl.handle.net/10919/33968en
dc.publisherVirginia Techen
dc.relation.haspartThesis_Johnson_071508.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectwell-to-wheelen
dc.subjectplug-inen
dc.subjecthybrid electric vehicleen
dc.titleA Plug-in Hybrid Electric Vehicle Loss Model to Compare Well-to-Wheel Energy Use from Multiple Sourcesen
dc.typeThesisen
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Thesis_Johnson_071508.pdf
Size:
495.34 KB
Format:
Adobe Portable Document Format

Collections