Perception and Planning of Connected and Automated Vehicles
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Connected and Automated Vehicles (CAVs) represent a growing area of study in robotics and automotive research. Their potential benefits of increased traffic flow, reduced on-road accident, and improved fuel economy make them an attractive option. While some autonomous features such as Adaptive Cruise Control and Lane Keep Assist are already integrated into consumer vehicles, they are limited in scope and require innovation to realize fully autonomous vehicles. This work addresses the design problems of perception and planning in CAVs. A decentralized sensor fusion system is designed using Multi-target tracking to identify targets within a vehicle's field of view, enumerate each target with the lane it occupies, and highlight the most important object (MIO) for Adaptive cruise control. Its performance is tested using the Optimal Sub-pattern Assignment (OSPA) metric and correct assignment rate of the MIO. The system has an average accuracy assigning the MIO of 98%. The rest of this work considers the coordination of multiple CAVs from a multi-agent motion planning perspective. A centralized planning algorithm is applied to a space similar to a traffic intersection and is demonstrated empirically to be twice as fast as existing multi-agent planners., making it suitable for real-time planning environments.