Applications of Sensory Analysis for Water Quality Assessment

Files

TR Number

Date

2018-01-30

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

In recent years, communities that source raw water from the Dan River experienced two severe and unprecedented outbreaks of unpleasant tastes and odors in their drinking water. During both TandO events strong 'earthy', 'musty' odors were reported, but the source was not identified. The first TandO event began in early February, 2015 and coincided with an algal bloom in the Dan River. The algal bloom was thought to be the cause, but after the bloom dissipated, odors persisted until May 2015. The second TandO in October, 2015 did not coincide with observed algal blooms.

On February 2, 2014 approximately 39,000 tons of coal ash from a Duke Energy coal ash pond was spilled into the Dan River near Eden, NC. As there were no documented TandO events before the spill, there is concern the coal ash adversely impacted water quality and biological communities in the Dan River leading to the TandO events. In addition to the coal ash spill, years of industrial and agricultural activity in the Dan River area may have contributed to the TandO events.

The purpose of this research was to elucidate causes of the two TandO events and provide guidance to prevent future problems. Monthly water samples were collected from August, 2016 to September, 2017 from twelve sites along the Dan and Smith Rivers. Multivariate analyses were applied to look for underlying factors, spatial or temporal trends in the data.

There were no reported TandO events during the project but sensory analysis, Flavor Profile Analysis, characterized earthy/musty odors present. No temporal or spatial trends of odors were observed. Seven earthy/musty odorants commonly associated with TandO events were detected. Odor intensity was mainly driven by geosmin, but no relationship between strong odors and odorants was observed.

Description

Keywords

Coal-ash, taste and odors in drinking water, flavor profile analysis, principal component analysis

Citation

Collections