Control Design for a Microgrid in Normal and Resiliency Modes of a Distribution System

TR Number

Date

2019-10-17

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

As inverter-based distributed energy resources (DERs) such as photovoltaic (PV) and battery energy storage system (BESS) penetrate within the distribution system. New challenges regarding how to utilize these devices to improve power quality arises. Before, PV systems were required to disconnect from the grid during a large disturbance, but now smart inverters are required to have dynamically controlled functions that allows them to remain connected to the grid. Monitoring power flow at the point of common coupling is one of the many functions the controller should perform. Smart inverters can inject active power to pick up critical load or inject reactive power to regulate voltage within the electric grid. In this context, this thesis focuses on a high level and local control design that incorporates DERs. Different controllers are implemented to stabilize the microgrid in an Islanding and resiliency mode. The microgrid can be used as a resiliency source when the distribution is unavailable. An average model in the D-Q frame is calculated to analyze the inherent dynamics of the current controller for the point of common coupling (PCC). The space vector approach is applied to design the voltage and frequency controller. Secondly, using inverters for Volt/VAR control (VVC) can provide a faster response for voltage regulation than traditional voltage regulation devices. Another objective of this research is to demonstrate how smart inverters and capacitor banks in the system can be used to eliminate the voltage deviation. A mixed-integer quadratic problem (MIQP) is formulated to determine the amount of reactive power that should be injected or absorbed at the appropriate nodes by inverter. The Big M method is used to address the nonconvex problem. This contribution can be used by distribution operators to minimize the voltage deviation in the system.

Description

Keywords

Distributed Energy Resources, Mixed-Integer Quadratic Programming, Microgrid, Volt/Var Optimization, Smart Inverters, Linear Quadratic Regulator

Citation

Collections