An Investigation into the Use of Density Functional Theory (DFT) Calculations for Predicting Vibrational Transitions for Perfluroinated Sulfonic Acid (PFSA) Ionomer Membranes

dc.contributor.authorSchultz, Spencer Alberten
dc.contributor.committeechairTroya, Diegoen
dc.contributor.committeememberMorris, John R.en
dc.contributor.committeememberMoore, Robert Bowenen
dc.contributor.departmentChemistryen
dc.date.accessioned2019-02-06T09:00:52Zen
dc.date.available2019-02-06T09:00:52Zen
dc.date.issued2019-02-05en
dc.description.abstractPerfluorinated sulfonic acid (PFSA) ionomer membranes demonstrate great potential for use in proton exchange membrane fuel cells (PEMFCs) due to their favorable electronic properties and excellent efficiency. However, the assignment of key vibrational transitions such as the symmetric sulfonate and ether stretches is not yet fully understood depriving researchers of a quick and simple technique for analyzing morphological changes. The symmetric sulfonate stretch could be used to track changes in the ionic clusters formed within the membrane while the ether stretch will provide insight into the largely semi-crystalline PTFE phase. Alterations in either regime will affect both ion transport and mechanical properties and produce a major shift in device performance. This study focused on predicting the vibrational transitions for Aquivion, 3M PFSA, and Nafion using density functional theory (DFT) with the bulk being performed using the same functional and basis set combination, B3LPY/6-31+G*. For all three ionomers, the predicted vibrational transitions were affected by changes in both the conformer and solvation method with water being used as the solvent. Despite the noted changes, both vibrational transitions were determined to be within the range of 970-1100 cm-1 with the symmetric sulfonate stretch present at around 970-1010 cm-1 and the ether stretch observed at around 1050-1100 cm-1 with solvation present. While the calculated peak positions mirror those found in the experimental spectra within the literature, the traditional normal mode assignments do not match those predicted by our calculations. However, recent studies have hypothesized that these vibrational transitions are coupled, which could explain why they have been so difficult to assign.en
dc.description.abstractgeneralPerfluorinated sulfonic acid (PFSA) ionomer membranes show great promise for use in proton exchange membrane fuel cells (PEMFCs) due to their excellent efficiency. However, the current techniques used to determine changes in structural configurations require sophisticated equipment and trained personnel to operate. Simpler techniques exist wherein the vibrations of certain bonds can be measured upon exposure of the sample to measured amounts of infrared light. The problem with this technique is that researchers currently do not fully understand at what wavelengths certain portions of the polymer known as functional groups will vibrate. These vibrations are also known as vibrational transitions. This study was undertaken to predict through numerical solutions to the Schrödinger equation at what wavelengths two particular vibrational transitions would occur for three common ionomers, Aquivion, 3M PFSA, and Nafion. For all three structures, the positions of these transitions mirrored that observed within the literature although the functional groups assigned to these positions did not match with those identified by our calculations. However, recent studies have indicated that these vibrational transitions occur at the same positions, which could explain why they have been so difficult to assign.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:18517en
dc.identifier.urihttp://hdl.handle.net/10919/87470en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectDFTen
dc.subjectPFSAen
dc.subjectPTFEen
dc.subjectIonomersen
dc.subjectAquivionen
dc.subject3M PFSAen
dc.subjectNafionen
dc.subjectPEMFCen
dc.subjectB3LYPen
dc.subjectHFen
dc.subjectM06en
dc.subjectWB97XDen
dc.subject6-31+G*en
dc.subject6-311+G*en
dc.subjectcc-pVDZen
dc.subjectAUG-cc-pVDZen
dc.subjectFTIRen
dc.subjectTransmissionen
dc.subjectATRen
dc.titleAn Investigation into the Use of Density Functional Theory (DFT) Calculations for Predicting Vibrational Transitions for Perfluroinated Sulfonic Acid (PFSA) Ionomer Membranesen
dc.typeThesisen
thesis.degree.disciplineChemistryen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Schultz_SA_T_2019.pdf
Size:
24.5 MB
Format:
Adobe Portable Document Format

Collections