VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Reinforcement Learning for the Cybersecurity of Grid-Forming and Grid-Following Inverters

TR Number

Date

2024-12-06

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

The U.S. movement toward clean energy generation has increased the number of installed inverter-based resources (IBR) in the grid, introducing new challenges in IBR control and cybersecurity. IBRs receive their set point through the communication link, which may expose them to cyber threats. Previous work has developed various techniques to detect and mitigate cyberattacks on IBRs, developing schemes for new inverters being installed in the grid. This work focuses on developing model-free control techniques for already installed IBR in the grid without the need to access IBR internal control parameters. The proposed method is tested for both the grid-forming and grid-following inverter control. Separate detection and mitigation algorithms are used to enhance the accuracy of the proposed method. The proposed method is tested using the modified CIGRE 14-bus North American grid with 7 IBRs in PSCAD/EMTDC. Finally, the performance of the detection algorithm is tested under grid normal transients, such as set point change, load change, and short-circuit fault, to make sure the proposed detection method does not provide false positives.

Description

Keywords

Cyberattack, inverter-based resources (IBR), power system control, reinforcement learning (RL), renewable energy sources

Citation

Collections