VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Neural Network Gaussian Process considering Input Uncertainty and Application to Composite Structures Assembly

Files

TR Number

Date

2020-05-18

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Developing machine learning enabled smart manufacturing is promising for composite structures assembly process. It requires accurate predictive analysis on deformation of the composite structures to improve production quality and efficiency of composite structures assembly. The novel composite structures assembly involves two challenges: (i) the highly nonlinear and anisotropic properties of composite materials; and (ii) inevitable uncertainty in the assembly process. To overcome those problems, we propose a neural network Gaussian process model considering input uncertainty for composite structures assembly. Deep architecture of our model allows us to approximate a complex system better, and consideration of input uncertainty enables robust modeling with complete incorporation of the process uncertainty. Our case study shows that the proposed method performs better than benchmark methods for highly nonlinear systems.

Description

Keywords

Neural Network Gaussian Process, Input Uncertainty, Data-driven Manufacturing, Composite Structures Assembly

Citation

Collections