Neural Network Gaussian Process considering Input Uncertainty and Application to Composite Structures Assembly
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Developing machine learning enabled smart manufacturing is promising for composite structures assembly process. It requires accurate predictive analysis on deformation of the composite structures to improve production quality and efficiency of composite structures assembly. The novel composite structures assembly involves two challenges: (i) the highly nonlinear and anisotropic properties of composite materials; and (ii) inevitable uncertainty in the assembly process. To overcome those problems, we propose a neural network Gaussian process model considering input uncertainty for composite structures assembly. Deep architecture of our model allows us to approximate a complex system better, and consideration of input uncertainty enables robust modeling with complete incorporation of the process uncertainty. Our case study shows that the proposed method performs better than benchmark methods for highly nonlinear systems.