Hyperpartisanship in Web Searched Articles

Files

TR Number

Date

2019-08-21

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

News consumption is primarily done through online news media outlets and social media. There has been a recent rise in both fake news generation, and consumption. Fake news refers to articles that deliberately contain false information to influence readers. Substantial dissemination of misinformation has been recognized to influence election results. This work focuses on hyperpartisanship in web-searched articles which refers to web searched articles which have polarized views and which represent a sensationalized view of the content. There are many such news websites which cater to propagating biased news for political and/or financial gain. This work uses Natural Language Processing (NLP) techniques on news articles to find out if a web-searched article can be termed as hyperpartisan or not. The methods were developed using a labeled dataset which was released as a part of the SemEval Task 4 - Hyperpartisan News Detection. The model was applied to queries related to U. S. midterm elections in 2018. We found that more than half the articles in web search queries showed hyperpartisanship attributes.

Description

Keywords

Hyperpartisanship, news, fake news, natural language processing, propaganda, misinformation

Citation

Collections