Amphibians in a changing world: assessing the effects of warming and drying on amphibian larvae and the relationships between larval survival, body size, and time to metamorphosis

TR Number

Date

2020-12-17

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Amphibians are influenced by climate change, but we do not have a clear understanding of how changes in temperature, precipitation, or both, may influence amphibian larvae in temperate regions. Do amphibian larvae have similar developmental responses to increased temperature and increased drying rates of wetlands - both plausible effects of climate change? What influence do the interactive effects of temperature and drying have on the relationships between the larval responses themselves (e.g., survival, body size, and time to metamorphosis)? To address these questions, we studied larval responses of two amphibian species, wood frogs (Lithobates sylvaticus) and spring peepers (Pseudacris crucifer), to simulated warming and drying in experimental ponds. Over 13 weeks, we manipulated temperature and water levels in ponds to produce 4 treatments: control, drying, warming, and drying + warming. Our manipulations created warming treatments that were on average 2 ° C higher than controls, and our drying treatments decreased in water depth by 2.5 cm each week compared to warming and control treatments that held a consistent amount of water. In both species, warming treatments resulted in significantly earlier timing of metamorphosis, and drying treatments resulted in significantly reduced body size. We saw a negative relationship between body size and time to metamorphosis (i.e., individuals that metamorphosed faster generally had larger body sizes), indicating an unexpected decoupling of the typical positive relationship between time to- and size at metamorphosis. The strength of the relationship between responses also varied by treatment for wood frogs but not spring peepers, indicating that the responses of larval amphibians to climate change may vary among species. Our study reveals complex relationships among larval survival, body size, and time to metamorphosis and highlights the need for considering not only the role of interacting climate-related pressures on amphibians but also the mechanisms underlying coupling of larval responses to these pressures. We encourage future research and discussion on a better understanding of why different climate pressures caused different responses, and if these patterns may be consistent in other aquatic species.

Description

Keywords

Ectotherm, trade-offs, mesocosm, climate change, interactions

Citation

Collections