System Design of an Integrated Terrestrial-Satellite Communications Network for Disaster Recovery


TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


This thesis describes a possible integrated terrestrial-satellite network system for disaster recovery and response. The motivation of this thesis was based on the adjacent spectrum allocations between the Virginia Tech terrestrial Local Multiple Distribution Service (LMDS) system and a Ka-band satellite system, and potentially being able to provide as an additional Ka-band satellite network backbone to the Virginia Tech terrestrial LMDS system for better and faster communications deployments. The Spaceway satellite system's design parameters were adopted typically for a Ka-band satellite system. The LMDS system was assumed to use IEEE 802.16 standard protocols although it currently uses its own proprietary protocols.

Four possible topologies integrating both terrestrial and satellite network were investigated. The study showed that the task was more problematic and complicated than anticipated due to incompatible network protocols, limitations of available hardware components, the high path loss at Ka-band, and the high cost of the equipment, although the adjacent frequency bands do suggest a possible integrated network.

In this thesis, the final selected topology was proposed and designed. The technical characteristics of the earth station used for coupling both terrestrial and satellite networks were determined by a link budget analysis and a consideration of network implementations. The reflector antenna used by the earth station was designed. In addition, other system design concerns and engineering tradeoffs, including adjacent satellite interference, rain attenuation, antenna pointing error, noise temperature, and modulation and multiple access selection, were addressed.



VSAT, TCP/IP, 30/20 GHz, Integrated Network, LMDS, Ka-band, SPACEWAY