Boundary value and Wiener-Hopf problems for abstract kinetic equations with nonregular collision operators
dc.contributor.author | Ganchev, Alexander Hristov | en |
dc.contributor.committeechair | Greenberg, William | en |
dc.contributor.committeemember | Ball, Joseph A. | en |
dc.contributor.committeemember | Hagedorn, George | en |
dc.contributor.committeemember | Quinn, Frank | en |
dc.contributor.committeemember | Slawny, Joseph | en |
dc.contributor.committeemember | Zweifel, P.F. | en |
dc.contributor.department | Mathematics | en |
dc.date.accessioned | 2014-08-13T14:39:02Z | en |
dc.date.available | 2014-08-13T14:39:02Z | en |
dc.date.issued | 1986 | en |
dc.description.abstract | We study the linear abstract kinetic equation T𝜑(x)′=-A𝜑(x) in the half space {x≥0} with partial range boundary conditions. The function <i>ψ</i> takes values in a Hilbert space H, T is a self adjoint injective operator on H and A is an accretive operator. The first step in the analysis of this boundary value problem is to show that T⁻¹A generates a holomorphic bisemigroup. We prove two theorems about perturbation of bisemigroups that are interesting in their own right. The second step is to obtain a special decomposition of H which is equivalent to a Wiener-Hopf factorization. The accretivity of A is crucial in this step. When A is of the form "identity plus a compact operator", we work in the original Hilbert space. For unbounded A’s we consider weak solutions in a larger space H<sub>T</sub>, which has a natural Krein space structure. Using the Krein space geometry considerably simplifies the analysis of the question of unique solvability. | en |
dc.description.admin | incomplete_metadata | en |
dc.description.degree | Ph. D. | en |
dc.format.extent | v, 79 leaves | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.uri | http://hdl.handle.net/10919/50020 | en |
dc.publisher | Virginia Polytechnic Institute and State University | en |
dc.relation.isformatof | OCLC# 14992786 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject.lcc | LD5655.V856 1986.G363 | en |
dc.subject.lcsh | Boundary value problems | en |
dc.subject.lcsh | Wiener-Hopf equations | en |
dc.title | Boundary value and Wiener-Hopf problems for abstract kinetic equations with nonregular collision operators | en |
dc.type | Dissertation | en |
dc.type.dcmitype | Text | en |
thesis.degree.discipline | Mathematics | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Ph. D. | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- LD5655.V856_1986.G363.pdf
- Size:
- 2.36 MB
- Format:
- Adobe Portable Document Format
- Description: