Dual-Use Strain Sensors for Acoustic Emission and Quasi-Static Bending Measurements
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The application of piezoelectric sensors such as the ultrasonic transducer has significantly enhanced the fields of nondestructive evaluation (NDE). Their application of piezoelectric materials allows for the sensing of low energy, high frequency acoustic emission (AE) events such as fatigue cracking in metals and delamination in composites. Utilizing the physical characteristics of these AE waves, the location of these structural defects can then be source located by means of time-of-flight trilateration. The real time sensing of such events has led to the field of structural health monitoring (SHM) and has revolutionized NDE. Furthermore, with the application of modern micro-electromechanical system-based (MEMS) technology, the fields of NDE and SHM can be improved greatly, and sensing instrumentation simplified. A novel piezoresistive-based MEMS strain sensor is presented as this improvement to NDE and SHM. The ultrathin silicon membrane-based (USM) strain sensor's ability to capture an AE signal is demonstrated by a Hsu-Nielsen source and shows comparable frequency content to a commercial piezoceramic ultrasonic transducer. To the knowledge of the authors, this makes the USM strain sensor the first known piezoresistive strain sensor capable of recording low energy AE. The novel improvements to NDE and SHM arise from the sensor's low minimum detectable strain and wide frequency bandwidth, enabling a dual-use application of both AE and static strain sensing. The USM sensor's ability to document quasi-static bending is demonstrated and once again compared with an ultrasonic transducer, which provides no significant response. This dual-use application is proposed to effectively combine the uses of both strain and ultrasonic transducer sensor types within one sensor, lending itself novel and useful to NDE and SHM. The potential benefits include enhanced sensitivity, reduced sensor size and cost, and reduced instrumentation complexity.