Limited Memory Space Dilation and Reduction Algorithms

dc.contributor.authorAnsari, Zafar A.en
dc.contributor.committeechairSherali, Hanif D.en
dc.contributor.committeememberLoganathan, G. V.en
dc.contributor.committeememberSarin, Subhash C.en
dc.contributor.departmentIndustrial and Systems Engineeringen
dc.date.accessioned2011-08-04T21:50:48Zen
dc.date.adate1998-08-11en
dc.date.available2011-08-04T21:50:48Zen
dc.date.issued1998-07-13en
dc.date.rdate1998-08-11en
dc.date.sdate1998-07-13en
dc.description.abstractIn this thesis, we present variants of Shor and Zhurbenko's r-algorithm, motivated by the memoryless and limited memory updates for differentiable quasi-Newton methods. This well known r-algorithm, which employs a space dilation strategy in the direction of the difference between two successive subgradients, is recognized as being one of the most effective procedures for solving nondifferentiable optimization problems. However, the method needs to store the space dilation matrix and update it at every iteration, resulting in a substantial computational burden for large-sized problems. To circumvent this difficulty, we first develop a memoryless update scheme. In the space transformation sense, the new update scheme can be viewed as a combination of space dilation and reduction operations. We prove convergence of this new algorithm, and demonstrate how it can be used in conjunction with a variable target value method that allows a practical, convergent implementation of the method. For performance comparisons we examine other memoryless and limited memory variants, and also prove a modification of a related algorithm due to Polyak that employs a projection on a pair of Kelley's cutting planes. These variants are tested along with Shor's r-algorithm on a set of standard test problems from the literature as well as on randomly generated dual transportation and assignment problems. Our computational experiments reveal that the proposed memoryless space dilation and reduction algorithm (VT-MSDR) and the proposed modification of the Polyak-Kelly cutting plane method (VT-PKC) provide an overall competitive performance relative to the other methods tested with respect to solution quality and computational effort. The r-Algorithm becomes increasingly more expensive with an increase in problem size, while not providing any gain in solution quality. The fixed dilation (with no reduction) strategy (VT-MSD) provides a comparable, though second-choice, alternative to VT-MSDR. Employing a two-step limited memory extension over VT-MSD sometimes helps in improving the solution quality, although it adds to computational effort, and is not as robust a procedure.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.otheretd-61498-16858en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-61498-16858en
dc.identifier.urihttp://hdl.handle.net/10919/9569en
dc.publisherVirginia Techen
dc.relation.haspartth.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectNondifferentiable Optimizationen
dc.subjectSpace Dilationen
dc.subjectr-algorithmen
dc.subjectSubgradient Optimizationen
dc.titleLimited Memory Space Dilation and Reduction Algorithmsen
dc.typeThesisen
thesis.degree.disciplineIndustrial and Systems Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
th.pdf
Size:
200.9 KB
Format:
Adobe Portable Document Format

Collections