VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Design of Control Algorithms for Automation of a Full Dimension Continuouis Haulage System

Files

ETD.pdf (1.39 MB)
Downloads: 185

ETD_VOL2.pdf (7.2 MB)
Downloads: 227

TR Number

Date

2004-10-05

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

The main theme of this research will be to develop solutions to the widely known 3-part question in mobile robotics comprising of "Where am I" "Where should I be" and "How do I get there". This can be achieved by implementing automation algorithms. Automation algorithms or control algorithms are vital components of any autonomous vehicle. Design and development of both prototype and full-scale control algorithms for a Long-Airdox Full Dimension Continuous Haulage system will be the main focus. Automation is a highly complex task, which aims at achieving increased levels of equipment efficiency by eliminating errors that arise due to human interference. Achieving a fully autonomous operation of a machine involves a variety of high-level interlaced functions that work in harmony, and at the same time perform functions that mimic the human operator. Automation has expanded widely in the field of mobile robotics, thus leading to the development of autonomous robots, automated guided vehicles and other autonomous vehicles. An indispensable element of an autonomous vehicle is a navigation system that steers it to a required destination. The vehicle must be able to determine its relationship to the environment by sensing, and also must be able to decide what actions are required to achieve its goal(s) in the working environment. The goal of this research is to demonstrate a fully autonomous operation of the Continuous Haulage System, and to establish its potential advantages.

Description

Keywords

Sensor based navigation, Mobile robotics, Automation algorithms

Citation

Collections