Systematic Reverse Engineering of Network Topologies: A Case Study of Resettable Bistable Cellular Responses
dc.contributor | Virginia Tech. Department of Biological Sciences | en |
dc.contributor | Virginia Bioinformatics Institute | en |
dc.contributor | Virginia Tech. Department of Computer Science | en |
dc.contributor | Virginia Tech. Department of Genetics, Bioinformatics and Computational Biology | en |
dc.contributor | Virginia Tech. Department of Physics | en |
dc.contributor | Virginia Tech. Center for Modeling Immunity to Enteric Pathogens. Nutritional Immunology and Molecular Medicine Laboratory | en |
dc.contributor | University of Arizona. Department of Molecular & Cellular Biology | en |
dc.contributor | Beijing Computational Science Research Center | en |
dc.contributor.author | Mondal, Debasish | en |
dc.contributor.author | Dougherty, Edward T. | en |
dc.contributor.author | Mukhopadhyay, Abhishek | en |
dc.contributor.author | Carbo, Adria | en |
dc.contributor.author | Yao, Guang | en |
dc.contributor.author | Xing, Jianhua | en |
dc.contributor.department | Biological Sciences | en |
dc.contributor.department | Computer Science | en |
dc.contributor.department | Physics | en |
dc.contributor.department | Fralin Life Sciences Institute | en |
dc.contributor.editor | Csikász-Nagy, Attila | en |
dc.date.accessed | 2016-02-12 | en |
dc.date.accessioned | 2016-02-16T08:03:30Z | en |
dc.date.available | 2016-02-16T08:03:30Z | en |
dc.date.issued | 2014-08-29 | en |
dc.description.abstract | A focused theme in systems biology is to uncover design principles of biological networks, that is, how specific network structures yield specific systems properties. For this purpose, we have previously developed a reverse engineering procedure to identify network topologies with high likelihood in generating desired systems properties. Our method searches the continuous parameter space of an assembly of network topologies, without enumerating individual network topologies separately as traditionally done in other reverse engineering procedures. Here we tested this CPSS (continuous parameter space search) method on a previously studied problem: the resettable bistability of an Rb-E2F gene network in regulating the quiescence-to-proliferation transition of mammalian cells. From a simplified Rb-E2F gene network, we identified network topologies responsible for generating resettable bistability. The CPSS-identified topologies are consistent with those reported in the previous study based on individual topology search (ITS), demonstrating the effectiveness of the CPSS approach. Since the CPSS and ITS searches are based on different mathematical formulations and different algorithms, the consistency of the results also helps cross-validate both approaches. A unique advantage of the CPSS approach lies in its applicability to biological networks with large numbers of nodes. To aid the application of the CPSS approach to the study of other biological systems, we have developed a computer package that is available in Information S1. | en |
dc.description.sponsorship | National Science Foundation | en |
dc.description.sponsorship | DMS-0969417 | en |
dc.description.sponsorship | National Institutes of Health | en |
dc.description.sponsorship | 5R01AT004308 | en |
dc.description.sponsorship | HHSN272201000056 | en |
dc.description.sponsorship | Virginia Tech. Open Access Subvention Fund | en |
dc.format.extent | 12 p. | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Mondal D, Dougherty E, Mukhopadhyay A, Carbo A, Yao G, et al. (2014) Systematic Reverse Engineering of Network Topologies: A Case Study of Resettable Bistable Cellular Responses. PLoS ONE 9(8): e105833. doi:10.1371/journal.pone.0105833 | en |
dc.identifier.doi | https://doi.org/10.1371/journal.pone.0105833 | en |
dc.identifier.issn | 1932-6203 | en |
dc.identifier.issue | 8 | en |
dc.identifier.uri | http://hdl.handle.net/10919/64827 | en |
dc.identifier.url | http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105833 | en |
dc.identifier.volume | 9 | en |
dc.language.iso | en_US | en |
dc.publisher | Public Library of Science | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.holder | Mondal, Debasish | en |
dc.rights.holder | Dougherty, Edward T. | en |
dc.rights.holder | Mukhopadhyay, Abhishek | en |
dc.rights.holder | Carbo, Adria | en |
dc.rights.holder | Yao, Guang | en |
dc.rights.holder | Xing, Jianhu | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Network motifs | en |
dc.subject | Topology | en |
dc.subject | Engineering and technology | en |
dc.subject | Gene regulatory networks | en |
dc.subject | Random walk | en |
dc.subject | Computer software | en |
dc.subject | Algorithms | en |
dc.subject | Genetic networks | en |
dc.title | Systematic Reverse Engineering of Network Topologies: A Case Study of Resettable Bistable Cellular Responses | en |
dc.title.serial | PLOS One | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Systematic_Reverse_Engineering_PLOS.pdf
- Size:
- 1.71 MB
- Format:
- Adobe Portable Document Format
- Description: