Estimating the Contributions of Soil and Cover Crop Nitrogen Mineralization for Corn

dc.contributor.authorGhimire, Sonien
dc.contributor.committeechairMaguire, Rory O.en
dc.contributor.committeememberFerreira, Gonzaloen
dc.contributor.committeememberWhite, Charles M.en
dc.contributor.committeememberReiter, Mark S.en
dc.contributor.committeememberThomason, Wade E.en
dc.contributor.departmentCrop and Soil Environmental Sciencesen
dc.date.accessioned2023-07-06T08:00:40Zen
dc.date.available2023-07-06T08:00:40Zen
dc.date.issued2023-07-05en
dc.description.abstractCurrent Virginia nitrogen (N) fertilizer recommendations do not include site-specific estimates of N supply from cover crops (CCs) or soil organic matter (SOM). Recent research successfully predicted the contribution of N from SOM and CCs to corn (Zea mays L.) in Pennsylvania. The objective of this work was to validate the biophysical model developed in Pennsylvania under Virginia conditions and to evaluate the decomposition rates of different surface-applied CC residues and the relationship between their chemical composition and decomposition rate. For the first objective, 83 N response trials were conducted in different regions of Virginia across 9 years using a randomized complete block design with four replications. The model was able to explain 47% and 15% of variability in unfertilized corn yield (RMSE = 1.6 Mg ha-1) and economical optimum N rate (EONR) (RMSE = 30 kg N ha-1) respectively. Efforts to improve the model by adding economically unresponsive sites improved the model performance to explain 45% of the variability in EONR. For the second objective, a lab incubation was performed to compare carbon (C) and N mineralization from four different CCs {Cereal Rye (CR), Hairy vetch (HV), Crimson clover (Cc) and Rapeseed (R)} on a sandy loam soil. Destructive sampling was performed at 6 different sampling dates – 3, 7, 14, 28, 56 and 112 days. ANOVA test revealed that the effects of CC species, incubation days and their interaction had a significant effect on mass decomposed, plant biochemical composition and net N mineralization. Variation in mass loss was positively related to lignin content for all the CCs while it was moderately correlated to C:N ratio for CR and R and weakly to HV and Cc. Biomass loss and N release was highest in HV followed by Cc, R and CR. Net N mineralization was highest in HV followed by R, Cc and CR amended soils.en
dc.description.abstractgeneralCurrent Virginia nitrogen (N) fertilizer recommendations do not include site-specific estimates of N supply from cover crops or soil organic matter, both of which can influence crop N need. Recent research successfully predicted the contribution of N from cover crops and soil to corn (Zea mays L.) in Pennsylvania. The objectives of this work were to validate the biophysical model developed in Pennsylvania under Virginia conditions and to evaluate the decomposition rates of different surface-applied cover crop residues and the relationship between their chemical composition and decomposition rate. The Pennsylvania-developed model was able to successfully estimate the economical optimum N rate for corn and predict the yield of unfertilized corn. Corn yield did not increase with increasing N rates in some fields. When these sites were omitted, the accuracy of the model improved. For the second objective, a lab incubation study was performed comparing C and N released from Cereal Rye (CR), Hairy vetch (HV), Crimson clover (Cc) and Rapeseed (R)} on a sandy loam soil. Destructive sampling was performed at 6 different sampling dates – 3, 7, 14, 28, 56 and 112 days. Variation in mass loss was positively related to lignin content for all the cover crops while it was moderately correlated to C:N ratio for CR and R and weakly to HV and Cc. Biomass loss and N release was highest in HV followed by Cc, R and CR.  en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:37778en
dc.identifier.urihttp://hdl.handle.net/10919/115653en
dc.language.isoenen
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectsoil organic matteren
dc.subjectcover cropsen
dc.subjectnitrogen mineralizationen
dc.subjectcornen
dc.subjectunfertilized yielden
dc.subjecteconomical optimum nitrogen rateen
dc.titleEstimating the Contributions of Soil and Cover Crop Nitrogen Mineralization for Cornen
dc.typeThesisen
thesis.degree.disciplineCrop and Soil Environmental Sciencesen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ghimire_S_T_2023.pdf
Size:
916.75 KB
Format:
Adobe Portable Document Format

Collections