A Distributed Parameter Approach to Optimal Filtering and Estimation with Mobile Sensor Networks
dc.contributor.author | Rautenberg, Carlos Nicolas | en |
dc.contributor.committeechair | Burns, John A. | en |
dc.contributor.committeemember | Zietsman, Lizette | en |
dc.contributor.committeemember | Herdman, Terry L. | en |
dc.contributor.committeemember | Cliff, Eugene M. | en |
dc.contributor.committeemember | Borggaard, Jeffrey T. | en |
dc.contributor.department | Mathematics | en |
dc.date.accessioned | 2014-03-14T20:10:22Z | en |
dc.date.adate | 2010-05-05 | en |
dc.date.available | 2014-03-14T20:10:22Z | en |
dc.date.issued | 2010-03-31 | en |
dc.date.rdate | 2010-05-05 | en |
dc.date.sdate | 2010-04-21 | en |
dc.description.abstract | In this thesis we develop a rigorous mathematical framework for analyzing and approximating optimal sensor placement problems for distributed parameter systems and apply these results to PDE problems defined by the convection-diffusion equations. The mathematical problem is formulated as a distributed parameter optimal control problem with integral Riccati equations as constraints. In order to prove existence of the optimal sensor network and to construct a framework in which to develop rigorous numerical integration of the Riccati equations, we develop a theory based on Bochner integrable solutions of the Riccati equations. In particular, we focus on ℐ<sub>p</sub>-valued continuous solutions of the Bochner integral Riccati equation. We give new results concerning the smoothing effect achieved by multiplying a general strongly continuous mapping by operators in ℐ<sub>p</sub>. These smoothing results are essential to the proofs of the existence of Bochner integrable solutions of the Riccati integral equations. We also establish that multiplication of continuous ℐ<sub>p</sub>-valued functions improves convergence properties of strongly continuous approximating mappings and specifically approximating C₀-semigroups. We develop a Galerkin type numerical scheme for approximating the solutions of the integral Riccati equation and prove convergence of the approximating solutions in the ℐ<sub>p</sub>-norm. Numerical examples are given to illustrate the theory. | en |
dc.description.degree | Ph. D. | en |
dc.identifier.other | etd-04212010-100919 | en |
dc.identifier.sourceurl | http://scholar.lib.vt.edu/theses/available/etd-04212010-100919/ | en |
dc.identifier.uri | http://hdl.handle.net/10919/27103 | en |
dc.publisher | Virginia Tech | en |
dc.relation.haspart | Rautenberg_CN_D_2010.pdf | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Riccati Equation | en |
dc.subject | Kalman Filter | en |
dc.subject | Mobile Sensor Networks | en |
dc.subject | Optimal Filtering | en |
dc.title | A Distributed Parameter Approach to Optimal Filtering and Estimation with Mobile Sensor Networks | en |
dc.type | Dissertation | en |
thesis.degree.discipline | Mathematics | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Ph. D. | en |
Files
Original bundle
1 - 1 of 1