The Design and Optimization of a Lithium-ion Battery Direct Recycling Process
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Nowadays, Lithium-ion batteries (LIBs) have dominated the power source market in a variety of applications. Lithium cobalt oxide (LiCoO2) is one of the most common cathode materials for LIBs in consumer electronics. The recycling of LIBs is important because cobalt is an expensive element that is dependent on foreign sources for production. Lithium-ion batteries need to be recycled and disposed properly when they reach the end of life (EOL) to avoid negative environmental impact. This project focuses on recycling cathode material (LiCoO2) by direct method. Two automation stages, tape peeling stage and unrolling stage, are designed for disassembling prismatic winding cores. Different sintering conditions (e.g., temperature, sintering atmosphere, the amount of lithium addition) are investigated to recycle EOL cathode materials. The results show that the capacity of the recycled cathode materials increases with increasing temperature. The extra Li addition leads to worse cycling performance. In addition, the sintering atmosphere has little influence on small- scale sintering. Also, most of directly recycled cathode materials have better electrochemical (EC) performance than commercial LiCoO2 (LCO) from Sigma, especially when cycling with 4.45V cutoff voltage.