VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Flowfield Downstream of a Compressor Cascade with Tip Leakage

dc.contributor.authorMuthanna, Chittiappaen
dc.contributor.committeechairDevenport, William J.en
dc.contributor.committeememberSimpson, Roger L.en
dc.contributor.committeememberRagab, Saad A.en
dc.contributor.departmentAerospace and Ocean Engineeringen
dc.date.accessioned2014-03-14T20:47:35Zen
dc.date.adate1998-11-11en
dc.date.available2014-03-14T20:47:35Zen
dc.date.issued1998-11-20en
dc.date.rdate1998-11-11en
dc.date.sdate1998-12-07en
dc.description.abstractAn 8 blade, 7 passage linear compressor cascade with tip leakage was built. The flowfield downstream of the cascade was measured using four sensor hot-wire anemometers, from which the mean velocity field , the turbulence stress field and velocity spectra were obtained. Oil flow visualizations were done on the endwall underneath the blade row. Also studied were the effects of tip gap height, and blade boundary layer trip variations. The results revealed the presence of two distinct vortical structures in the flow. The tip leakage vortex is formed due to the roll up the tip flow as it exits the tip gap region. A second vortex, counter-rotating when compared to the tip leakage vortex, is formed due to the separation of the flow leaving the tip gap from the endwall. Increasing the tip gap height increases the strength of the tip leakage vortex, and vice versa. Changing the boundary layer trip had no effect on the flowfield due the fact that boundary layers on the blade surface had separated. As the vortices develop downstream, the tip leakage vortex convects into the passage "pushing" the counter rotating vortex with it. As it does so, the tip leakage vortex dominates the endwall flow region, and is responsible for most of the turbulence present in the downstream flow field. This turbulence production is primarily due to axial velocity gradients in the flow, and not due to the circulatory motion of the vortex. Velocity spectra taken in the core of the vortex show the broadband characteristics typical of such turbulent flows. The results also revealed that the wakes of the blades exhibit characteristics of two-dimensional plane wakes. The wake decays much faster than the vortex. Velocity spectra taken in the wake region show the broadband characteristics of such turbulent flows, and also suggest that there might be some coherent motion in the wake as a result of vortex shedding from the trailing edge of the blades. The present study reveals the complex nature of such flows, and should provide valuable information in helping to understand them. This study was made possible with support from NASA Langley through grant number NAG-1-1801 under the supervision of Dr. Joe Poseyen
dc.description.degreeMaster of Scienceen
dc.identifier.otheretd-110798-235327en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-110798-235327/en
dc.identifier.urihttp://hdl.handle.net/10919/35626en
dc.publisherVirginia Techen
dc.relation.haspartvita.pdfen
dc.relation.haspartthesis.pdfen
dc.relation.haspartERRATA.PDFen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectFlowfielden
dc.subjectTurbulenceen
dc.subjectHot Wiresen
dc.subjectCascadeen
dc.subjectCompressoren
dc.titleFlowfield Downstream of a Compressor Cascade with Tip Leakageen
dc.typeThesisen
thesis.degree.disciplineAerospace and Ocean Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
thesis.pdf
Size:
5.49 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
ERRATA.PDF
Size:
6.85 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
vita.pdf
Size:
3.42 KB
Format:
Adobe Portable Document Format

Collections