VTechWorks staff will be away for the Independence Day holiday from July 4-7. We will respond to email inquiries on Monday, July 8. Thank you for your patience.
 

Plane Permutations and their Applications to Graph Embeddings and Genome Rearrangements

dc.contributor.authorChen, Xiaofengen
dc.contributor.committeechairReidys, Christian Michaelen
dc.contributor.committeememberMortveit, Henning S.en
dc.contributor.committeememberHaskell, Peter E.en
dc.contributor.committeememberFloyd, William J.en
dc.contributor.departmentMathematicsen
dc.date.accessioned2017-04-28T06:21:25Zen
dc.date.available2017-04-28T06:21:25Zen
dc.date.issued2017-04-27en
dc.description.abstractMaps have been extensively studied and are important in many research fields. A map is a 2-cell embedding of a graph on an orientable surface. Motivated by a new way to read the information provided by the skeleton of a map, we introduce new objects called plane permutations. Plane permutations not only provide new insight into enumeration of maps and related graph embedding problems, but they also provide a powerful framework to study less related genome rearrangement problems. As results, we refine and extend several existing results on enumeration of maps by counting plane permutations filtered by different criteria. In the spirit of the topological, graph theoretical study of graph embeddings, we study the behavior of graph embeddings under local changes. We obtain a local version of the interpolation theorem, local genus distribution as well as an easy-to-check necessary condition for a given embedding to be of minimum genus. Applying the plane permutation paradigm to genome rearrangement problems, we present a unified simple framework to study transposition distances and block-interchange distances of permutations as well as reversal distances of signed permutations. The essential idea is associating a plane permutation to a given permutation or signed permutation to sort, and then applying the developed plane permutation theory.en
dc.description.degreePh. D.en
dc.format.mediumETDen
dc.identifier.othervt_gsexam:10619en
dc.identifier.urihttp://hdl.handle.net/10919/77535en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectPlane Permutationen
dc.subjectMapen
dc.subjectGraph Embeddingen
dc.subjectGenome Rearrangementen
dc.titlePlane Permutations and their Applications to Graph Embeddings and Genome Rearrangementsen
dc.typeDissertationen
thesis.degree.disciplineMathematicsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Chen_X_D_2017.pdf
Size:
766.52 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Chen_X_D_2017_support_1.pdf
Size:
968.24 KB
Format:
Adobe Portable Document Format
Description:
Supporting documents