Vehicle Wheel Energy Reduction at Intersections using Signal Timing and Adaptive Cruise Control

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


The Hybrid Electric Vehicle Team (HEVT) at Virginia Tech participates in the 4-Year EcoCAR Mobility Challenge organized by Argonne National Laboratory. The objective of this competition is to modify a stock 2019 internal combustion engine Chevrolet Blazer and incorporate a hybrid powertrain and advanced driver assist systems. The Blazer has a P4 hybrid architecture which contains an electric traction motor on the rear axle and an internal combustion engine on the front axle. HEVT seeks to develop a vehicle with advanced driving capabilities to demonstrate energy savings by utilizing existing technologies. The hybrid market has generally been tailored to small compact vehicles however, a Chevrolet Blazer is a midsize utility vehicle that offers additional space with the benefit of increased fuel economy. The research discussed in this paper focuses on the design of a Signalized Intersection Control Strategy. First, research is performed on different methods of intersection control and implementation with an existing Model Predictive Adaptive Cruise Controller. Based on ease of integration into an existing tuned Eco Adaptive Cruise Control System (ACC), a control strategy operating in the background of the main vehicle controllers is chosen. The main topic of this research is the development and simulation of a Signalized Intersection Control Strategy that works through an Eco ACC system to achieve further energy savings during an approach to a connected intersection while ensuring rider safety. This paper expands on the current knowledge of vehicle utilization of Signal Phase and Timing (SPaT) signals through simulated test cases of a vehicle system model using MATLAB. In each case, the tractive energy consumption and travel times are analyzed for both the Eco ACC system with Signalized Intersection Control Strategy (informed) vehicle and an assumed uninformed driver for comparison. In the case of a vehicle approaching a green intersection which turns red several seconds after SPaT information is received, the informed system shows a 92% decrease or 75 Wh/mi reduction in propel energy consumption at when compared to an uninformed driver. However, in a similar case where the vehicle accelerates back to cruising speed after the light turns green, displays only an 11% decrease or 47 Wh/mi reduction in propel energy consumption at the wheel when compared to the uninformed driver. These simulations confirm that the Signalized Intersection Control Strategy reduces the propel energy consumption at the wheel during approaches to signalized intersections without extending the travel time greatly and in some cases at all. The results of this research show that the control strategy reduces tractive energy consumption while maintaining travel time.



Cruise Control, Adaptive Cruise Control, Energy, Vehicle, Model Predictive Control, Signal Phase and Timing