Post-Processing Method for Determining Peaks in Noisy Strain Gauge Data with a Low Sampling Frequency

dc.contributor.authorHill, Peter Leeen
dc.contributor.committeechairWicks, Alfred L.en
dc.contributor.committeememberBurdisso, Ricardo A.en
dc.contributor.committeememberWoolsey, Craig A.en
dc.contributor.departmentMechanical Engineeringen
dc.date.accessioned2017-07-07T08:00:45Zen
dc.date.available2017-07-07T08:00:45Zen
dc.date.issued2017-07-06en
dc.description.abstractThe Virginia Tech Transportation Institute is recognized for being a pioneer in naturalistic driving studies. These studies determine driving behavior, and its correlation to safety critical events, by equipping participant's vehicles with data acquisition systems and recording them for a period of time. The driver's habits and responses to certain scenarios and events are analyzed to determine trends and opportunities to improve overall driver safety. One of these studies installed strain gauges on the front and rear brake levers of motorcycles to record the frequency and magnitude of brake presses. The recorded data was sampled at 10 hertz and had a significant amount of noise introduced from temperature and electromagnetic interference. This thesis proposes a peak detection algorithm, written in MATLAB, that can parallel process the 40,000 trips recorded in this naturalistic driving study. This algorithm uses an iterative LOWESS regression to eliminate the offset from zero when the strain gauge is not stressed, as well as a cumulative sum and statistical concepts to separate brake activations from the rest of the noisy signal. This algorithm was verified by comparing its brake activation detection to brake activations that were manually identified through video reduction. The algorithm had difficulty in accurately identifying activations in files where the amplitude of the noise was close to the amplitude of the brake activations, but this only described 2% of the sampled data. For the rest of the files, the peak detection algorithm had an accuracy of over 90%.en
dc.description.abstractgeneralThe Virginia Tech Transportation Institute is recognized for being a pioneer in naturalistic driving studies. In these studies, participants are recorded with cameras and other sensors for a period of time. Researchers then look at this data and find the habits that tended to distract the drivers, like using their phones while driving, and other characteristics that bring insight on what causes crashes and unsafe driving behavior. One of these studies installed strain gauges on the front and rear brake levers of motorcycles to record how hard the brakes were pressed, as well as how often. The strain gauge was sampled ten times a second, and had a significant amount of variation in the signal from temperature changes and interference from other electronic systems on the bike. This thesis proposes a method, written in MATLAB, that can quickly find all the brake activations in the 40,000 trips recorded in this naturalistic driving study. This program uses an iterative LOWESS regression, cumulative sum, and other statistical concepts to determine the brake activations in the signal. This program was verified by comparing its brake activation it found to brake activations that were manually identified through video reduction. The algorithm had difficulty in accurately identifying activations in files where the peaks of the noise were close to the peaks of the brake activations, but this only described 2% of the sampled data. For the rest of the files, the program had an accuracy of over 90%.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:12107en
dc.identifier.urihttp://hdl.handle.net/10919/78316en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectStrain Gaugeen
dc.subjectMATLABen
dc.subjectDigital Signal Processingen
dc.subjectPeak Detectionen
dc.titlePost-Processing Method for Determining Peaks in Noisy Strain Gauge Data with a Low Sampling Frequencyen
dc.typeThesisen
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hill_PL_T_2017.pdf
Size:
17.01 MB
Format:
Adobe Portable Document Format

Collections