Polymer Composite Spinal Disc Implants

TR Number

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

The goal of this research study was to create an artificial annulus fibrosus similar to that of the natural intervertebral disc, as well as find preliminary results for vertebral endplate connection and nucleus pulposus internal pressure, for the correction of disc degeneration in the spine. The three-part composite samples needed to demonstrate good shock absorption and load distribution while maintaining strength and flexibility, and removing the need for metal in the body, something of which no current total disc replacement or spinal fusion surgery can offer. For this study, the spinal disc was separated into its three different components, the annulus fibrosus, the nucleus pulposus, and the vertebral endplates, each playing a vital role in the function of the disc. Two low-cost materials were selected, a Covestro polyurethane and cellulose nanocrystals, for the purpose of creating a polymer composite spinal disc implant. A methodology was established for creating the cast composite material for use as an annulus fibrosus, while also investigating its mechanical properties. The same composite material was used to acquire preliminary results for vertebral endplate connection to the synthesized annulus, however no additional material was used to determine or mimic the mechanical properties of these endplates, due to time constraints. Also because of time constraints, the nucleus used in this study was only comprised of water with no other additives for preliminary testing since the natural nucleus is comprised of about 80-90% water. These properties were then compared to the mechanical properties of the natural disc, so that they could be finely tuned to emulate the natural disc. It is shown in this study that the composite material, when swelled in water, was able to mimic the annulus fibrosus in tensile strength and modulus, however showed higher compressive strength and modulus than ideal. The samples also did not undergo any permanent deformation within the realm of force actually introduced to the natural disc. The vertebral endplates showed decent adhesion to the synthesized annulus, however there were slight defects that became failure concentrators during compression testing. The nucleus showed promising results maintaining good internal pressure to the system causing better compressive load distribution, with barreling of the samples.

Description

Keywords

Spinal anatomy, spinal degeneration, lower back pain, intervertebral discs, polyurethane composites, cellulose nanocrystals

Citation

Collections